

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering, Volume 21,
Number 10

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering October 2008

4

9

15

20

25

3
14

30

31

DeparDepar tmentstments

From the Sponsor

Coming Events
Letter to the Editor

Web Sites
SSTC 2009 Conference Ad

BackTalk

Measures and Risk Indicators for Early Insight Into Software
Safety
While software increases functionality and control in today’s systems, it
also adds complexity and vulnerability to hazards. This article explores a
measurement approach that provides early visibility into the implementation
of the software safety hazard process.
by Dr. Victor Basili, Kathleen Dangle, Linda Esker, Frank Marotta,
and Ioana Rus

Safety and Security: Certification Issues and Technologies
In defense systems, compliance with formal safety and security standards
is becoming a necessity. This article looks at the DO-178B and the
Common Criteria standards, analyzes language-related issues, and assesses
three possible technologies for safety-critical or high-security systems.
by Dr. Benjamin M. Brosgol

WebBee: A Platform for Secure Mobile Coordination and
Communication in Crisis Scenarios
In a disaster scenario, first-responders must be able to communicate using
devices they likely already have and are well-accustomed, on a secure and
mobile channel, and with systems beyond the consumer communication
infrastructure. This article analyzes how WebBee addresses these concerns.
by Sugih Jamin

Constructing Change-Tolerant Systems Using
Capability-Based Design
Advancements in technology have created large-scale software systems that
still require change while meeting stakeholder expectations, technology
advancements, scheduling constraints, and market demands. This article
explores a capability-based approach to evolving change-tolerant systems.
by Dr. James D. Arthur and Ramya Ravichandar

DoD Business Mission Area Service-Oriented Architecture to
Support Business Transformation
Will a service-oriented architecture be the DoD Business Mission Area’s
answer to their multifaceted operational needs? This article explores their
complex business transformation infrastructure as well as the
service-oriented architecture’s capabilities in readiness, information
assurance, and governance.
by Dennis E. Wisnosky, Dimitry Feldshteyn, Wil Mancuso, Al (Edward) Gough,
Eric J. Riutort, and Paul Strassman

DeDevvelopment elopment ofof FFault-ault-TTolerantolerant SystemsSystems

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

CrossTalk
CO-SPONSORS:

DOD-CIO

OSD (AT&L)

NAVAIR

76 SMXG

309 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

PUBLISHING COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Kristen Baldwin

Jeff Schwalb

Daniel Goddard

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); the
Office of the Secretary of Defense (OSD) Acquisition,
Technology and Logistics (AT&L); U.S. Navy (USN);
U.S. Air Force (USAF); and the U.S. Department of
Homeland Security (DHS). DoD-CIO co-sponsor:
Assistant Secretary of Defense (Networks and
Information Integration). OSD (AT&L) co-sponsor:
Software Engineering and System Assurance. USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); and
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 24.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

October 2008 www.stsc.hill.af.mil 3

From the Sponsor

Since the development of the digital computer, software continues to play an impor-
tant and evolutionary role in the operation and control of hazardous, safety-critical

functions. The reluctance of the engineering community to relinquish human control
of hazardous operations has diminished dramatically in the last 15 years. Today, digital
computer systems have autonomous control over safety-critical functions in nearly
every major technology, both commercially and within government systems. This rev-
olution is due primarily to the ability of software to reliably perform critical control

tasks at speeds unmatched by its human counterpart. Other factors influencing this transition
include our ever-growing need and desire for increased versatility, greater performance capabil-
ity, higher efficiency, and a decreased life-cycle cost.

In most instances, software can meet all of the above attributes of the system’s performance
when properly designed. The logic of the software allows for decisions to be implemented with-
out emotion and with speed and accuracy. This has forced the human operator out of the con-
trol loop because they can no longer keep pace with the speed, cost effectiveness, and decision
making process of the system.

According to the MIL-STD-882D, the main objective (or definition) of system safety engi-
neering, which includes safety-critical software systems, is “the application of engineering and
management principles, criteria, and techniques to optimize all aspects of safety within the con-
straints of operations effectiveness, time, and cost throughout all phases of the system life
cycle.”

The ultimate responsibility for the development of a “safe system” rests with program man-
agement. The commitment to provide qualified people and an adequate budget and schedule for
a software development program begins with the program director or manager. Top manage-
ment must be a strong voice of safety advocacy and must communicate this personal commit-
ment to each level of program and technical management. Project directors or managers must
support the integrated safety process between systems engineering, software engineering, and
safety engineering in the design, development, testing, and operation of the system software.

This issue of CrossTalk provides an in-depth look at the implementation and develop-
ment of safety-critical software systems. It also explores how these systems will likely face
unplanned challenges during long-term development, requiring developers to build flexibility
into their approaches.

Authors Dr. Victor Basili, Kathleen Dangle, Linda Esker, Frank Marotta, and Ioana Rus
guide readers through their methodology for developing early safety measures on safety-critical
software system projects in Measures and Risk Indicators for Early Insight Into Software Safety.

In Safety and Security: Certification Issues and Technologies, Dr. Benjamin M. Brosgol analyzes the
two primary safety and security standards—DO-178B and the Common Criteria—and gives
software professionals the tools to avoid hazards and vulnerabilities.

First responders who need a secure and mobile coordination and communication infra-
structure during crisis will take special interest in Sugih Jamin’s WebBee: A Platform for Secure
Mobile Coordination and Communication in Crisis Scenarios.

In Constructing Change-Tolerant Systems Using Capability-Based Design, Dr. James D. Arthur and
Ramya Ravichandar recognize the need for flexibility and provide readers with thought-pro-
voking ideas on how a capability-based approach may be the answer to complex, large-scale sys-
tems that are hostile to change.

And, finally, don’t miss DoD Business Mission Area Service-Oriented Architecture to Support Business
Transformation by Dennis E. Wisnosky, Dimitry Feldshteyn, Wil Mancuso, Al (Edward) Gough,
Eric J. Riutort, and Paul Strassman. They examine whether a service-oriented architecture (SOA)
is the best fit for the Department of Defense’s (DoD’s) Business Mission Area (accounting for
roughly half of the DoD Information Technology budget) and examine the DoD’s SOA vision.

I hope you enjoy reading CrossTalk’s variety of articles on how to better approach the
development of safety-critical software systems. I certainly did.

Development of Safety-Critical Software Systems

Ken Chirkis
Naval Air Systems Command

4 CROSSTALK The Journal of Defense Software Engineering October 2008

The purpose of the system safety
process is to identify and mitigate haz-

ards associated with the operation and
maintenance of a system under develop-
ment. System safety is often implemented
through an approach that identifies haz-
ards and defines actions that will mitigate
the hazard and verify that the mitigations
have been implemented. The residual risk is
the risk remaining when a hazard cannot
be completely mitigated. The goal of the
system safety process is to reduce this
residual risk to an acceptable level, as
defined by the safety certifier. Cost is a
consideration in determining the level of
acceptable residual risk.

As software contributes an ever-
increasing level of functionality and con-
trol in today’s systems, the system safety
process must scrutinize software-specific
components of the system. Software can
contribute to system safety as both a haz-
ard source and hazard mitigation.
Software is not intrinsically hazardous but
it plays a role in safety in many systems
when it:
• Causes hardware to perform unsafe

actions.
• Directs an operator to perform unsafe

actions.
• Guides an operator to make unsafe

decisions.
• Mitigates hazards.

In this article, we define a measure-
ment approach that provides early visibili-
ty into the implementation of the software
safety hazard process, assessing the level
of consistency and discipline that is
applied to the process for identifying and
mitigating software-related hazards. Early
process visibility assists safety engineers in
detecting breakdowns in the process, ask-
ing the right kinds of questions, and mak-
ing timely decisions that will improve the

resulting system safety. This early visibility
is important as mitigations typically affect
system requirements and design; making
these decisions late in the system develop-
ment lifecycle can be cost-prohibitive. The
proposed measurement approach identi-
fies risks resulting from the application of

the safety hazard analysis process (or lack
thereof) by performing process checks
and assesses the potential for achieving a
safe system. It is important to note that
this approach does not provide for an
evaluation of the system’s safety.

This article begins by defining terms
and documenting our assumptions. We
then describe our approach for defining
specific safety measures in the context of
an existing environment and provide some
examples.

Terminology and Key Concepts
A hazard is any real or potential condition
that can cause injury, illness, or death to

personnel; damage to or loss of a system,
equipment, or property; or damage to the
environment. Key terms associated with
hazards and their management are:
• Causes. What can make the hazard

occur?
• Controls. Mitigation actions whose

purpose is to minimize the chances of
a hazard occurring.

• Verifications. Some assurance, like
safety test cases, that the hazard has
been controlled.
A hazard is open if at least one of its

causes is open; a cause is open if at least
one of its controls is open; a control is
open if at least one of its verifications is
open. A hazard is closed when all of the
controls for all of its causes have been
implemented and verified.

A safety-related requirement is a require-
ment whose purpose is to control a haz-
ard. One hazard might be addressed by
several requirements (e.g., one hazard may
affect several parts of the system), or one
requirement might address several hazards
(e.g., a central control or communication
system may mitigate hazards from multi-
ple nodes).

A hazard tracking system (HTS) is a
repository of identified system hazards
and their associated causes, controls, and
verifications. Within the HTS, causes
should be related with the system element
causing the hazard, controls should be
related with the requirement(s) controlling
or mitigating the hazard, and verifications
should be related with the hazard cause
and the test verifying that the hazard is
controlled.

A hazard is defined as a software-relat-
ed hazard if it has at least one software
cause or one software control. A software
safety-related requirement is a software
requirement that can create or contribute

Measures and Risk Indicators for
Early Insight Into Software Safety

Kathleen Dangle and Linda Esker
Fraunhofer Center – Maryland

Software contributes an ever-increasing level of functionality and control in today’s systems. This increased use of soft-
ware can dramatically increase the complexity and time needed to evaluate the safety of a system. Although the actual
system safety cannot be verified during its development, measures can reveal early insights into potential safety problems
and risks. An approach for developing early software safety measures is presented in this article. The approach and the
example software measures presented are based on experience working with the safety engineering group on a large
Department of Defense program.

Dr. Victor Basili
University of Maryland and Fraunhofer Center – Maryland

Development of Fault-Tolerant Systems

Ioana Rus
Honeywell Aerospace

Frank Marotta
U.S. Army Aberdeen Test Center

“Early process visibility
assists safety engineers
in detecting breakdowns
in the process, asking the
right kinds of questions,

and making timely
decisions that will

improve the resulting
system safety.”

Measures and Risk Indicators for Early Insight Into Software Safety

October 2008 www.stsc.hill.af.mil 5

to a hazard in the system or is defined to
control or mitigate a hazard.

An example of a system hazard
description that has a software-related
cause is as follows:
• Accident/Mishap. Undesired and un-

planned event that results in a speci-
fied level of loss (e.g., two planes col-
lide).

• Hazard/Description. State that leads
to an accident (e.g., guidance system
may malfunction).

• Hazard Cause. The action causing
the hazard to occur (e.g., a miscalcula-
tion of the projected trajectory).

• Hazard Control or Safety Require-
ment. Mitigation via a requirement or
set of requirements whose purpose is
to minimize the chances of a hazard
(e.g., multiple computations of the
projected trajectory are computed and
polled).

• Verification. An assurance that the
hazard has been controlled (e.g., safety
test cases).
Figure 1 provides an illustration of the

context for this example.
Several assumptions are made: (1) all

hazards should be recorded in an HTS;
(2) hazards are retired or have their asso-
ciated risk reduced over time, but do not
leave the HTS; and (3) closed hazards can
become open hazards when a new cause
is found. Although the approach does not
prescribe a particular management or
organizational structure, it is assumed
that the safety and project organizations
communicate and collaborate effectively
in both evolving requirements and verify-
ing mitigations. As the safety hazard
analysis will impact requirements, design,
code, and tests, it is assumed that the
standard processes defined by the project
for change management apply to artifacts
impacted by safety hazard analysis.

The level of rigor (LoR) is the amount
of requirements analysis, development
discipline, testing, and configuration con-
trol required to mitigate the potential
safety risks of the software component
[1]. Each software component should be
assessed and assigned an LoR for devel-
opment. This refers to any mechanism
put in place to treat specific requirements
with special treatment, giving a piece of
software higher levels of safety assurance
and providing users higher confidence
through greater discipline and process.

A safety-related defect is a defect that
refers to a failure to comply with a safety
requirement, an unexpected behavior that
affects safety, or the recognition that a
control has not been defined/implement-
ed/verified. Safety-related defects should

be traceable to one or more hazards or
may generate new hazards. Defects can
be counted directly or they can be
weighed by the set of related require-
ments or hazards they affect. A software
defect tracking system (i.e., tool/database to
capture software defects identified during
testing) is used as the source of safety-
related software defects.

Gaining Software Safety
Visibility
Our goal in applying the proposed mea-
surement approach is to provide software
safety engineers visibility into the software
safety process and to assist them in mak-
ing judgments about the software safety
process implementation and its execution.
We identified five needs, and an associated
inquiry area for each was defined:
1. Software Safety Analysis Process.

Confirm that system and software
requirements and development prac-
tices are in compliance with safety
processes.

2. Hazard and Mitigation Identifi-
cation. Ensure that the program is
adequately identifying and document-
ing the appropriate information about
a hazard (i.e., hazards, causes, and
controls as defined by the software
safety analysis process).

3. Hazard Monitoring. Ensure that
sufficient actions are taken by analyz-
ing and monitoring hazard causes,
controls, and verifications over time
(i.e., are the hazard controls being
implemented and verified?).

4. Appropriate LoR for Software
Safety. Balance risk with the cost of
safety by identifying the appropriate
software development LoR.

5. Safety-Related Defects. Identify
whether any safety problems remain
in the system for the safety assess-
ment reports by identifying all out-
standing safety-related defects.
For each area, readiness and visibility

measures are defined, specifying different
measurement details. A readiness assessment
provides a preliminary view into the state
of the safety process for software and
checks that the data needed for the sec-
ond type of measurement is available.
Software safety visibility digs deeper by
defining models, measures, and interpre-
tations that provide information on the
implementation of safety practices (or
lack thereof) and points to safety-related
risks and issues.

To minimize the overhead associated
with data collection and analysis, a com-
bination of a top-down goal/ques-
tion/metric analysis and a bottom-up
inventory of the data already collected by
the organization is used to identify the
measures that will be cost-effective and
address management needs [2].

For example, to address software safe-
ty analysis, an investigation may be per-
formed to determine whether there is a
documented safety process that identifies
requirements as safety-related and
records that information in the require-
ments repository. If this is not true, then
the program may have a problem and fur-
ther measures that assume counting the
number of safety-related requirements
cannot be utilized. A sample set of key
questions addressing the five inquiry
areas for the readiness assessment are
shown in Table 1 (see next page). All
readiness questions must be answered Yes
to indicate that the appropriate measure-

Unmanned Air
Vehicles

Figure 1: Example of a Hazard, Cause, Control, and Verification

Development of Fault-Tolerant Systems

6 CROSSTALK The Journal of Defense Software Engineering October 2008

ments can be gathered. No answers pro-
vide an early warning that software safety
may not be properly addressed. In this
case, the recommended action is to iden-
tify why the data is not available (root
cause) and take an appropriate corrective
action. The questions in Table 1 address
problems in dealing with safety in general
and software safety in particular.

While these data readiness questions
seem simplistic, they can uncover a host
of issues that may not be obvious unless

the questions are asked explicitly. These
questions expose some common prob-
lems in implementing a useable, cost-
effective HTS and in the overall hazard
tracking approach:
• Software Hazard Identification.

Safety-related requirements are not
identified as such and hazard controls
are not identified as software-related
safety requirements if they are. This
can demonstrate inadequate attention
to software safety.

• Hazard Traceability. The HTS does
not provide sufficient linkages among
the requirements documentation sys-
tem, the test plan, or to the defect
tracking system. Hazards must be bi-
directionally traceable to require-
ments, tests, and defects in order to
verify complete coverage, determine
comprehensiveness of the hazard
analysis, and ensure that the hazard
data represents the system accurately
over time.

• Data Integrity. Hazards, causes, and
controls may not be described in suf-
ficient detail to be understood and
verified. The information in the HTS
must be accurate, clear, and specific in
order to understand and track hazards
throughout the development and
deployment of the system.

• LoR. There may be difficulty in dif-
ferentiating among different levels of
rigor for the various software safety
requirements and identifying, assign-
ing, and tracking the appropriate LoR
to specific software components that
implement the safety-related require-
ment. Lack of proper LoR differenti-
ation can lead to inadequate attention
on high-risk hazards or too much
attention on low-risk hazards.
Additionally, the trade-off between
higher levels of rigor and their associ-
ated higher costs must be considered
in order to assess the right balance of
LoR distribution. An LoR should be
assigned and traceable from require-
ments through design to code.
Many HTS problems are caused by an

inadequate vision for the use of the HTS,
such as when it is viewed as a storage
repository rather than an analysis tool. It
is important to make sure that (1) the
HTS has adequate functionality, quality
checks, and documentation; (2) there is
traceability and synchronization among
the various support systems (e.g., the
HTS and the requirements management
system and the defect tracking system);
and (3) the quality of the data is moni-
tored to minimize the need to scrub the
data later on. The cost of not adhering to
this advice is high rework costs and lower
than desired system safety. Addressing
these issues should simply be a part of
the software safety development process.

Laying the Measurement
Foundation
Once it is clear that the safety process has
been established, deeper investigation of
each inquiry area can be performed. An
example set of software safety visibility

Inquiry
Area

Goal Software Safety Visibility
Questions

Software
Safety
Analysis
Process

Check how well each
organization, system, and
integrator is addressing software
safety in the system hazard
analysis process.

o Have a reasonable number of
software safety-related
requirements been identified?

Hazard and
Mitigation
Identification

Check if a reasonable number of
software-related hazards,
causes, controls, and
verifications are identified.

o Have a reasonable number of
software safety hazards been
identified?

o Are causes, controls, and
verifications being generated
over time?

o Does every cause have at
least one control?

o Does every control have at
least one verification?

Hazard
Monitoring

Check if software-related
hazards (and hazard software
components, i.e., causes,
controls, and verifications) are
identified and closed at an
appropriate rate.

o Have the number of open
software causes/controls for
hazards decreased over time?

Appropriate
LoR for
Software
Safety

Check if the various software
development groups are
assigning reasonable levels of
rigor to safety-related software.

o Have the appropriate levels of
rigor been allocated to
software development?

Safety
Defects

Check if software safety-related
defects are being handled.

o Have safety-related software
defects been closed at a
reasonable rate over time?

Table 2: Software Safety Visibility Needs

Inquiry Area Readiness Assessment Questions

Software Safety Analysis
Process

o Is there a documented software safety process that
identifies requirements as safety-related?

o Are safety-related software requirements marked as
such in the requirements repository?

Hazard and Mitigation
Identification

o Is there an (automated) HTS where software-related
hazards, causes, controls, and verifications are
recorded (and can be counted)?

Hazard Monitoring o Are hazards mapped back to their source
(requirements) and controls mapped to
requirements?

o Are all the fields being entered into the HTS?
Appropriate LoR for
Software Safety

o Are the various levels of rigor identified and is the
distribution rational?

Safety Defects o Are software safety-related failures/faults identified as
such in the software defect tracking system?

o Are safety-related test cases identified as such?
o Are defect closures recorded?

Table 1: Readiness Assessment Questions

Measures and Risk Indicators for Early Insight Into Software Safety

October 2008 www.stsc.hill.af.mil 7

goals and questions is presented in Table 2.
When a readiness assessment question
has been satisfied, the software safety vis-
ibility questions and measures through-
out the life cycle of the program can be
applied.

Establishing the measures requires
more than identifying the data to be col-
lected. Each measure is characterized in
terms of the question it answers, the model
used to interpret its values in order to
answer the target question, the response
that suggests the action to be taken based
upon the answer to the question, and the
scope of applying the measure. Table 3
presents examples of models and responses
for three of the five inquiry areas1.

For each model, assumptions were
made about how the resulting measure-
ments should be interpreted. An expected
value and a range are selected for within
which the actual is acceptable. The
expected value can be derived by: (1) his-
torical data from past programs, (2) prior

data from the current program, (3) proxy
estimate (i.e., comparison with something
similar), or (4) expert estimate. The range
of the expected values can be based on
general distributions or specific or related
experience.

If the calculated value is not within
the expected range, then there may be a
problem. Expected values or ranges can
be improved over time based upon the
incorporation of new data into the
model.

To illustrate these concepts, consider
one measure proposed for the process
area, PSSR, which is defined as PSSR = #
software safety requirements / # software
requirements *100. The model can be
defined as:

if |PSSR – EPSSR| < e
where EPSSR is the estimated value of
PSSR, e is the acceptable threshold for
deviation from the estimate, and (EPSSR
-e, EPSSR +e) is the acceptable range,

then a reasonable number of software
safety requirements have been identified.

The key is to have good estimates for
EPSSR and e. Ideally, historical data
should be used and the estimated value
and range (i.e., sigma, the standard devia-
tion) is taken from a similar system or sub-
system. However, there may be little his-
torical data. In this case, proxies are iden-
tified for estimates2.

One possible proxy is to use system
safety requirements as the benchmark for
software safety requirements. We can let
the range be defined by some percentage
around that value that provides initially
acceptable limits. Once the program is
under development, early data can be sub-
stituted on the program for these proxies.
Thus:

EPSSR = #system safety requirements /
#system requirements *100
and e = 20 percent of EPSSR.

Inquiry Area Measure(s) Model(s) Response(s)
Software
Safety
Analysis
Process

Percent Software Safety
Requirements (PSSR)

Estimated PSSR (EPSSR)

PSSR = # software safety
requirements / # software
requirements *100

if |PSSR - EPSSR| < e then a
reasonable number of software safety
requirements have been identified
where
the EPSSR = the average of the
PSSRs for all systems in the family,
(in line with other systems) and e =
(EPSSR) (i.e., standard deviation of the
PSSRs used to calculate EPSSR)

EPSSR = #system safety requirements
/ #system requirements * 100, (in line
with system safety in general) and
e = 20% of EPSSR.

PSSR not being within the range of
EPSSR should indicate the need for a
management action. For example,
check into the safety hazard elicitation
process and whether it is being
applied correctly, investigate the reason
why the system under consideration
has such a small (or large)
percentage of safety requirements,
and develop a “get well” plan. If the
value is too large, what are the cost
and schedule implications of
corrective actions?

Hazard
Monitoring

Hazard cause/control closure
evolution (HCCE)

HCCEi,3 = MAi+1,3 / MAi,3

where
MAi,3 = (Xi-2 + Xi-1 + Xi)/ 3
is the moving average of the set
of open causes (controls) at
three consecutive time intervals.

If HCCEi,3 1 then the closure rate of
hazard software causes/controls is
not converging.

If the number is 1 and it is not in the
beginning phases of development,
more effort should go into closing the
hazard software causes/controls. If it
is because the opens are increasing
too fast (new hazards are being
introduced, new causes for existing
hazards), then investigate the
reasons. If it is because the closes
are not increasing fast enough, then
investigate the reasons.

Graphing the cumulative identified,
open, and closed causes/controls
provides good insight into the trends
of these variables.

Safety
Defects

Count by priority of open safety-
related software trouble reports
at time i (COSRTR).

If COSRTR 0 then there are open
defects that need further analysis.

If all safety-related defects are not
closed, then create a list of open
defects, prioritize them, and investigate
why they exist. This measure should be
taken periodically starting at the
beginning of test and up until safety
assessment report delivery.

or

Table 3: Some Examples of Software Safety Measures

Development of Fault-Tolerant Systems

8 CROSSTALK The Journal of Defense Software Engineering October 2008

The model is interpreted by defining a
response if the resulting value is not within
range. For example, if PSSR is not within
the range e of EPSSR, it indicates the need
for management action. One example
would be to check into the safety analysis
process and whether it is being appropri-
ately applied, investigate the reason why
the system under consideration has such a
small (or large) percentage of safety
requirements, and develop a get well plan.

In defining these measures, existing
data sources (e.g., a hazard tracking data-
base, requirements management reposi-
tories, and defect tracking systems) and
processes (e.g., safety analysis processes)
were leveraged. This can be done provid-
ed that the assumptions upon data col-
lection (listed in the Terminology and
Key Concepts section) are true. The
derived measures in Table 3 can be
graphically represented (e.g., as evolution
over time), as appropriate, for the analy-
sis results on the questions it helps to
answer. Key issues for determining soft-
ware safety visibility are: (1) selecting the
right subset of measures, (2) defining
appropriate thresholds, (3) determining
appropriate management responses, and
(4) providing user-friendly reports and
actionable responses; all of these issues

are program-dependent.
The safety measures collected by a

program form the beginning of an expe-
rience base, which creates a historical base
across current programs within a program
and for future programs. To date, there is
very little data on which to calibrate the
models. It is hoped that programs will
start collecting data so that more knowl-
edge can be obtained and software safety
measure baselines can be established.

Conclusion
The methodology presented here should
be tailored to fit the context of the orga-
nization; it is not intended to imply a cor-
rect answer or an all or nothing approach.
The areas of inquiry and the measures can
be adjusted appropriately; however, as a
minimum, any program dealing with safe-
ty should at least address the readiness
questions.

Gaining visibility through objectives
measures into software safety has become
increasingly important for today’s software-
intensive programs. Although software
safety measures cannot determine whether
a system is safe, they can provide valuable
indicators of problems and risks that give
management critical knowledge for making
timely and well-informed decisions.u

References
1. Radio Technical Commission for

Aeronautics, Inc. “Software Consider-
ations in Airborne Systems and
Equipment Certification.” RTCA DO-
178B. 1 Dec. 1992.

2. Basili, V., and D. Weiss. “A Method-
ology for Collecting Valid Software
Engineering Data.” IEEE Transac-
tions on Software Engineering Nov.
1984: 728-738.

Notes
1. The question is omitted from this table

due to space limitations; for scope, we
assume that these measures apply to
the entire system.

2. This argues for the need to accumulate
data on programs, not just for the
good of the current program but for
use in future programs.

Additional Reading
1. Joint Software System Safety

Committee. Software System Safety
Handbook. Dec. 1999.

2. MIL-STD-882. DoD Standard
Practice for System Safety. 10 Feb.
2000 <http://safetycenter.navy.mil/
instructions/osh/milstd882d.pdf>.

About the Authors

Victor Basili, Ph.D., is
a professor of computer
science at the University
of Maryland and Chief
Scientist at the Fraun-
hofer Center – Maryland

(FC-MD). He works on measuring, eval-
uating, and improving software process-
es and products.

E-mail: basili@fc-md.umd.edu

Kathleen Dangle is an
FC-MD division director
where she works with
organizations to imple-
ment software manage-
ment-related improve-

ments such as software measurement,
acquisition, and Capability Maturity
Model® Integration-based processes.

E-mail: kdangle@fc-md.umd.edu

Linda Esker is an FC-
MD senior engineer, pro-
viding expertise to gov-
ernment programs in
program management
and software develop-

ment as well as metrics definition and
analysis.

Phone: (301) 403-8967
E-mail: lesker@fc-md.umd.edu

Frank Marotta is a
mathematician at the U.S.
Army Aberdeen Test
Center and has more
than 20 years experience
in software testing of

Army weapon systems, test optimiza-
tion, and software metrics.

E-mail: frank.marotta@
us.army.mil

Ioana Rus is a member
of the Honeywell Aero-
space Software Center
for Excellence. She works
in process modeling and
simulation, empirical stud-

ies, software dependability, and measure-
ment.

E-mail: irus@computer.org

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

October 2008 www.stsc.hill.af.mil 9

Compliance with formal safety stan-
dards is becoming a major considera-

tion, and sometimes a requirement, in
defense systems. The safety standard that
is most relevant is DO-178B [1], which is
used by the Federal Aviation Administra-
tion (FAA) for the certification of com-
mercial aircraft. DO-178B is process-ori-
ented; certification is not so much a safety
assessment of the completed system, but
rather an evaluation of a set of developer-
provided artifacts. These artifacts are
intended to provide both direct evidence of
sound software engineering practice and
lend assurance (through indirect evidence)
of the safety of the resulting system.

DO-178B identifies five levels of criti-
cality: A (highest) through E (lowest).
Table 1 characterizes the various levels
and identifies the number of DO-178B
requirements that apply. The term with
independence means that the evidence for
meeting a requirement must be supplied
by someone other than the developer. The
term safety-critical generally applies to soft-
ware at levels A and B, which demand
greater rigor and more comprehensive
analysis than the lower levels.

DO-178B focuses on requirements-
based testing and bi-directional traceabili-
ty (from requirements to code, and vice
versa) as key elements of software verifi-
cation. Test cases must fully cover the
code; dead code (unexercised code that does
not correspond to a specific requirement)
must be removed.

DO-178B is open to criticism on sev-
eral grounds:
• It does not directly assess the safety of

the resulting system.
• Although the artifacts are process-ori-

ented, there is no guarantee that sound
processes were followed and it is not
rare for developers to prepare the DO-
178B artifacts for previously devel-
oped components a posteriori.

• Its emphasis on testing does not ade-

quately take into account alternative
technologies (such as formal methods)
for providing safety assurance.

• It is unclear on how its objectives
apply to modern software develop-
ment approaches such as object-ori-
ented technology (OOT).
These problems should not be overem-

phasized. DO-178B has been successful in
practice: Although there have been some
close calls, DO-178B-certified software has
never been the direct cause of an aircraft
accident resulting in a fatality. However,
much has changed in the software industry
since the early 1990s when DO-178B was
written. Work is in progress on a successor,
DO-178C [2], that will attempt to address
some of the perceived issues with DO-
178B. For example, DO-178C will accom-
modate newer software technologies
(OOT, model-based design) and alternative
software verification techniques (formal
methods, abstract interpretation).

Security Certification
Security is generally defined as the protec-
tion of assets against threats to their confi-
dentiality, integrity, and/or availability.
Designing an information technology (IT)
product for security thus involves design
steps (avoiding vulnerabilities that adver-
saries could exploit to compromise these
requirements) as well as runtime actions

(detecting and responding to attempted
breaches).

DO-178B says nothing explicit about
security, but a system with security vulner-
abilities is at risk for exploitation by adver-
saries to render it unsafe. The safety requires
security principle has two implications. First,
an organization developing safety-critical
software should adopt methodologies and
design frameworks that can help realize
security requirements. Guidelines such as
the “Defense Acquisition Guidebook” [3]
and architectures such as multiple inde-
pendent levels of security (MILS) [4] are
relevant. Second, it must be possible to
assess whether a product with safety-criti-
cal requirements is sufficiently secure. The
Common Criteria/Common Evaluation
Methodology [5] provides such an assess-
ment mechanism. These international
standards include a catalog of security-
functional and assurance requirements and
a process for evaluating the security char-
acteristics of a given IT product.

Somewhat analogous to the levels of
DO-178B, the Common Criteria defines
seven Evaluation Assurance Levels
(EALs), numbered from 1 to 7 in increas-
ing order of criticality. Generally speaking,
EAL 4 corresponds to best commercial
practice without a serious focus on security
threats; higher levels require special securi-
ty-oriented mechanisms and increased

Safety and Security: Certification Issues and Technologies1

Many military systems are safety-critical, with failure possibly resulting in loss of human life. In today’s interconnected envi-
ronment, safety requires security. Compliance with the higher levels of safety or security standards demands a disciplined devel-
opment process along with appropriate programming language and toolset technology. Since full, general-purpose languages are
too large and complex to be usable for safety-critical or high-security systems, a key requirement is to define subsets that are
simple enough to facilitate certification but expressive enough to program the needed application functionality. This article sum-
marizes representative safety and security standards (DO-178B and the Common Criteria, respectively), identifies the lan-
guage-related issues surrounding safety and security certification, and assesses three candidate technologies—C (including
C++), Ada (including SPARK), and Java—with respect to suitability for safety-critical or high-security systems.

Dr. Benjamin M. Brosgol
AdaCore

Level Effect of Anomalous Behavior
Number of
Objectives

A Catastrophic
failure

 “... prevent continued safe flight and
landing...”

66 (14 with
independence)

B Hazardous/severe
failure

“... serious or potentially fatal injuries
to a small number of … occupants ...”

65 (11 with
independence)

C Major failure

“... discomfort to occupants, possibly
including injury...”

57

D Minor failure

“... some inconvenience to
occupants...”

28

E None “... no effect on aircraft operational
capability or pilot workload...”

0

Condition

Table 1: Criticality Levels in DO-178B

Development of Fault-Tolerant Systems

10 CROSSTALK The Journal of Defense Software Engineering October 2008

effort in demonstrating compliance. At
EAL 7, formal methods (i.e., mathematics-
based analyses) are required to demonstrate
that security requirements are met.

With safety implying the need for
security, it is reasonable to consider certi-
fying a system against standards for both.
This idea is not new; the SafSec project
[6], sponsored by the United Kingdom’s
Ministry of Defense, has developed an
integrated methodology for dual safety
and security certification for avionics. In
another effort, a group at the University of
Idaho has analyzed the correspondence
between DO-178B and the Common
Criteria, mapping DO-178B objectives to
Common Criteria elements [7], and has
studied the feasibility of joint certification.
However, the practicality of applying the
Common Criteria to large Department of
Defense (DoD) systems is unclear. As
summarized in a 2007 Report of the
Defense Science Board Task Force:

Criticisms of Common Criteria-
based schemes are that they are
expensive, require artifacts that are
not produced until well after product
design and implementation, do not
substantially reduce implementation-
level vulnerabilities when using
today’s software development prac-
tices, and lack thorough penetration
analysis at EAL 4 and below. [8]

Furthermore, the fact that a product
has been certified at a specific EAL means
very little by itself. First, it says nothing
about the quality of the product outside
the security functional requirements.
Second, a prospective consumer needs to
understand which of these requirements
are being implemented and whether the
vendor-assumed operational environment
(the severity of the threats/assumed skills
of the adversaries) matches reality.

Notwithstanding how it is assessed,
security is obviously necessary for safety,
and safety certification agencies are paying
increasing attention to the relationship
between the two. As an example, an FAA
“Special Conditions” notice directed one
supplier to demonstrate the independence
of the networks for passenger-accessible
components and flight control on one of
its aircraft [9].

A Comparison of Safety and
Security Certification Issues
DO-178B and the Common Criteria have
some basic similarities:
• Concern with the full software devel-

opment life cycle—including peripher-

al activities such as configuration man-
agement—in an attempt to catch
human (developer) error before the
system is fielded.

• Tiered approach (criticality levels)
reflecting real-life trade-offs: Resources
are finite, and a system must be safe/
secure enough for its intended purpose.

• Emphasis on testing as a major ele-
ment of software verification.
There are also some important differ-

ences:
• Scope of requirements. DO-178B

deals with the entire system; the
Common Criteria focuses almost
exclusively on just the security func-
tional requirements.

• Functional requirements. There is
no specific set of safety functions
called out in DO-178B. In contrast,
the security domain has well-defined
functional requirements that need to
be implemented.

• System users/operators. An IT
product must be immune to attacks
from unknown and possibly malevo-
lent users who can directly supply
input. Input to a safety-critical system
is generally supplied by known opera-
tors whose trustworthiness has been
separately vetted.
In one sense, compliance with safety

standards is more demanding:
• Each component must be certified

against requirements for its safety level.
• At the higher levels, it is necessary to

both demonstrate the absence of dead
code and perform structural testing to
verify the absence of non-required
functionality.

• For EAL compliance, the specific devel-
opment and testing requirements apply
only to the security functions and not to
the entire IT product; there is no prohi-
bition against dead code/extra function-
ality (although such code must be
shown to be free from vulnerabilities).
In another sense, compliance with

security standards is more demanding:
• Formal methods are required at EAL 7.
• Vulnerability analysis is difficult and

must assume a sophisticated and
malevolent adversary; for safety, the
adversaries are the laws of physics.
Although safety requires security, the

relationship in the other direction is not so
immediate. Most IT products for which
security is critical do not control systems
where life is at stake and, thus, safety is
generally not an issue.

In the context of overall system
design, safety and security sometimes con-
flict, especially with respect to behavior
under failure conditions. Taking a system

offline to protect data may be reasonable
behavior for security, but if the data are
needed for flight control/management,
then such a policy may have disastrous
consequences for safety. Fail-safe is not the
same thing as fail-secure. These sorts of
conflicts need to be resolved during
design, with appropriate trade-offs based
on the anticipated risks.

Programming Language
Requirements
The programming language choice is
arguably the most important technical
decision that the developer organization
will make. As summarized in a National
Academy of Sciences report:

The overwhelming majority of
security vulnerabilities reported in
software products—and exploited
to attack the users of such products
—are at the implementation level.
The prevalence of code-related
problems, however, is a direct con-
sequence of higher-level decisions
to use programming languages,
design methods, and libraries that
admit these problems. [10]

Although directed at security issues,
these comments apply equally to safety.
The programming language plays a key
role in determining the ease or difficulty
of developing software that avoids vulner-
abilities and that is certifiable against safe-
ty or security standards.

A simple example of a programming
language feature that can easily lead to an
application vulnerability is the C library
function gets(), which reads a character
string as input from a user until an end-of-
line or end-of-file is encountered. The pro-
gram can only pre-allocate an area of
some fixed length as the destination, but a
user can accidentally or intentionally sup-
ply input that exceeds this bound. The
effect is the classical buffer overflow, in
which the excess characters overwrite
other data, possibly including a function’s
return address. By crafting an input string
with specific content, a malevolent user
can take control of the machine to execute
arbitrary code.

Although DO-178B and the Common
Criteria do not offer direct guidance on a
programming language choice, it is possi-
ble to abstract from their specific objec-
tives and infer several general require-
ments that a language must meet. The fol-
lowing sections discuss four of these
requirements: reliability, predictability,
analyzability, and expressiveness.

Safety and Security: Certification Issues and Technologies

October 2008 www.stsc.hill.af.mil 11

Reliability
The language should promote the devel-
opment of readable, correct code as well
as:
• Have an intuitive lexical and syntactic

structure and be free of traps and pit-
falls.

• Help detect errors early (at compile
time if possible), and should prevent
errors such as out-of-range array
indices and references to uninitialized
data.

• Help (if it supports concurrent pro-
gramming with threads/tasks) in avoid-
ing errors such as unprotected access-
es to shared data, race conditions
(where the effect of the program
depends on the relative speed of the
threads/tasks), and deadlock.

Predictability
The language specification should be
unambiguous. Implementation-dependent
or, worse, undefined behavior introduces
vulnerabilities because the effect of the
program may not be as the developer had
intended.

Analyzability
The language should facilitate both static
analysis (detecting uninitialized variables,
identifying dead code, predicting maxi-
mum stack usage and worst-case execu-
tion time, etc.) and dynamic analysis
(requirements-based or structure-based
testing). A useful catalog of such analysis
techniques (from [11]) is given in Table 2.

The various analysis techniques
impose constraints on the programming
language. For example, control and data
flow analyses generally prohibit the use of
goto statements, stack usage analysis gener-
ally prohibits recursion, and coverage
analysis may preclude the use of source
code constructs that generate implicit
loops or conditionals. As a result, there is
no such thing as the safety-critical or high-
security subset of a given language. The
particular subset used either determines or
is determined by the analysis techniques
that will assist in demonstrating compli-
ance with the operative certification stan-
dard.

Automated static analysis tools play an
important role in the safety and security
domains; indeed, there is a U.S. Depart-
ment of Homeland Security-sponsored
project under way—Static Analysis
Metrics and Tool Evaluation (SAMATE)
[12]—identifying and measuring the effec-
tiveness of such tools. Static analysis tools
are most successful during program devel-
opment, where they can help detect prob-
lems before they occur, versus as a tech-

nique for detecting vulnerabilities a posteri-
ori in existing code.

Expressiveness
The language should support general-pur-
pose programming, either through lan-
guage features or auxiliary libraries, and
should also offer specialized functionality
(as required). For real-time safety-critical
systems, this means support for interrupt
handling, low-level programming, concur-
rency, perhaps fixed-point arithmetic, and
other features. For high-security systems,
it means mechanisms are needed for
implementing security-functional require-
ments (e.g., for cryptography).

Unfortunately, language generality (as
implied by the expressiveness require-
ment) directly conflicts with the analyz-
ability requirement. That conflict compli-
cates the language selection decision.

Object-Oriented Technology
The history of programming languages
has seen a steady evolution of features
that promote maintainable software and
many of these features directly support
the reliability and analyzability require-
ments previously described. However,
some of the advances present difficulties
for safety and security certification.
Perhaps the most significant example is
OOT [13], found in such languages as
C++, Ada 95, and Java. OOT is not
addressed in DO-178B, and there are
indeed a number of challenges:
• A paradigm clash. OOT’s distribu-

tion of functionality across classes
conflicts with DO-178B’s focus on
tracing between requirements and
implemented functions.

• Technical issues. The features that
are the essence of OOT complicate
safety and security certification. For

example, dynamic binding typically is
implemented by a compiler-generated
data structure known as a vtable (a table
of addresses of functions). For safety
or security certification, the developer
must demonstrate that the vtable is
properly initialized and that it cannot
be corrupted.

• Cultural issues. Certification authori-
ty personnel are not necessarily lan-
guage experts and may (rightfully) be
concerned about how to deal with
unfamiliar technology.
A series of workshops several years ago

produced a handbook [14] that addressed
these issues in detail. The in-progress work
on DO-178C is taking these into account,
and it is likely that the eventual new stan-
dard will offer some direct guidance in con-
nection with OOT. However, developers
are not waiting for DO-178C. OOT is cur-
rently being used in safety-critical code; as
one example, an avionics system using Ada
95’s object-oriented features has been certi-
fied at Level A. It seems inevitable—as
experience with OOT and certification is
gained—that usage of object-oriented
languages will increase.

Candidate Programming
Languages
Although (in principle) any programming
language could be used for developing
safety-critical or high-security software,
the requirements for reliability, pre-
dictability, and especially analyzability
imply that suitable subsets be chosen. The
key issues are how a language can be sub-
setted to ease certification for applications
restricted to the subset, and whether the
language has intrinsic problems that can-
not be removed by subsetting.

This section summarizes how several
current language technologies—either

Approach Group Name Technique(s)

Control Flow
Data Flow Flow Analysis
Information Flow
Symbolic Execution

Symbolic Analysis
Formal Code Verification

Range Checking Range Checking
Stack Usage Stack Usage
Timing Analysis Timing Analysis
Other Memory Usage Other Memory Usage

Static Analysis

Object Code Analysis Object Code Analysis
Equivalence Class Requirements-Based Testing
Boundary Value
Statement Coverage
Branch Coverage

Dynamic Analysis
(Testing)

Structure-Based Testing
Modified Condition/
Decision Coverage

Table 2: Analysis Techniques

Development of Fault-Tolerant Systems

12 CROSSTALK The Journal of Defense Software Engineering October 2008

currently in use or under consideration for
safety-critical systems—compare with
respect to subsettability.

C-Based Technology2

MISRA-C
The United Kingdom-based Motor
Industry Software Reliability Association
(MISRA) has produced a set of language
restrictions, called MISRA-C [16], which
attempts to mitigate C’s vulnerabilities.
MISRA-C codifies best practices for C pro-
gramming and has become somewhat of a
de facto standard as a C subset for critical
systems. Benefits stem from C’s relative
simplicity, the large population of C pro-
grammers, and a wide assortment of tools
and service providers. MISRA-C has been
used successfully in safety-critical systems.

On the other hand, MISRA-C has
some significant drawbacks:
• C was not designed for safety-critical

systems, and some intrinsic issues (e.g.,
the wraparound semantics for integer
overflow) cannot be removed by sub-
setting.

• Despite MISRA-C’s stated goals, the
rules are not always enforceable by sta-
tic tools, and different tools may
enforce the subset differently.

• Since concurrency is not provided in C
(it is only available through external
libraries), MISRA-C offers no guid-
ance on how to use C in a multi-
threaded environment.

C++
C++ [17] is in many ways a better C.
Developers of safety-critical systems
often have staff knowledgeable in C++
and may possess existing C++ compo-
nents that they would like to re-use in a
certified system.

To help meet this goal, coding stan-
dards such as Joint Strike Fighter C++
[18], and MISRA C++ [19] have been
developed. These extend or adapt
MISRA-C to deal with C++’s additional
facilities. The rules constrain the usage of
language features in order to avoid prob-
lems and to promote good style.

Safe C++ coding standards are essen-
tial if C++ is chosen, and C++ has been
used to develop safety-critical systems.
However, the previously noted drawbacks
for MISRA-C apply here, and the OOT
coding guidelines do not solve the under-
lying certification issues.

Ada-Based Technology
Ada
Ada [20] was designed to be used for safe-
ty-critical systems. It avoids many of the C
and C++ vulnerabilities (e.g., checking for

out-of-range array indexing and integer
overflow), and also offers a standard set of
concurrent programming features. Ada
continues being widely used for safety-
critical systems including military and
commercial avionics.

Full Ada is too large to be practical for
safety certification so subsetting is
required. Ada provides a unique approach
to this issue, allowing the application to
specify the features that are to be excluded.
This means no runtime support libraries
for such features, and compile-time error
detection of attempted uses. The à la carte
style to defining language subsets is flexi-
ble and does not require specialized tool
support: a standard compiler performs the
necessary analysis.

The latest Ada language standard also
includes the Ravenscar profile [21], a cer-
tifiable subset of concurrency features.

Ada’s disadvantages for safety-critical
systems are largely external (non-techni-
cal). Ada usage is not as widespread as
other languages and, thus, its tool vendor
community is smaller. On the technical
side, Ada does not directly address vulner-
abilities such as references to uninitialized
variables. As with C and C++, supple-
mentary analysis is required to detect/pre-
vent such errors.

SPARK
SPARK [22] is a subset of Ada 95, aug-
mented by specially formed comments
known as contracts (or annotations), designed
to facilitate a rigorous, static demonstra-
tion of program correctness. SPARK
omits features that complicate analysis or
formal proofs or that interfere with
bounded time/space predictability. The
language includes most of Ada 95’s static
features as well as the Ravenscar concur-
rency profile, and the semantics are com-
pletely unambiguous (no implementation-
dependent or undefined behavior).

Contracts in SPARK specify data and
information flow, inter-module dependen-
cies, and dynamic invariants (pre-/post-
conditions, assertions). The SPARK tools
analyze the program to ensure that the

code is consistent with the contracts and
that no runtime exceptions will be raised.
They detect errors such as potential refer-
ences to uninitialized variables and dead
code. The static analysis performed by the
SPARK tools is sound (there are no false neg-
atives, an especially important requirement
in connection with safety certification)
with a low false alarm rate (there are few
false positives). The SPARK tools can also
generate verification conditions and auto-
mate the proof of these conditions.

SPARK has been used in practice on a
variety of systems, both safety-critical and
high-security. Of all the candidate lan-
guage technologies, SPARK best meets
the requirements for reliability, pre-
dictability, and analyzability. Its main tech-
nical drawback is with expressibility, as it
has a rather restricted feature set.
Additionally, the SPARK infrastructure
(user/vendor community) is smaller than
that of other language technologies.

Java-Based Technology
Java [23] seems simultaneously logical and
curious as a technology choice for safety-
critical systems. On one hand, it was
designed with careful attention to security:
Its initial goal was to enable downloadable
applets to be executed on client machines
without risk of compromising the confi-
dentiality or integrity of client resources.
The Java language is largely free from the
implementation dependencies found in C,
C++, and Ada, such as order of expres-
sion evaluation. Java also performs con-
servative checks to prevent unreachable
(dead) code and references to uninitialized
variables. It provides automatic storage
management (garbage collection) instead of
an explicit free construct that is the source
of subtle errors in other languages.

Security, however, is not the same as
safety. Indeed, Java technology has limita-
tions for safety-critical systems, falling into
two general categories:
1. Ensuring real-time predictability.
2. Meeting certification standards such as

DO-178B.
Both of these have been the subject of

Java Specification Requests (JSRs) under
Sun Microsystems’ Java Community
Process [24]. JSRs 1 [25] and 282 [26] have
defined the Real-Time Specification for
Java (RTSJ); JSR-302 [27], in progress, is
defining a subset of the RTSJ that is
intended for Java applications that need to
be certified to DO-178B at levels up to A.

The RTSJ extends the Java platform to
add real-time predictability. The main
enhancements are for concurrency (to
define scheduling semantics more precise-
ly than in standard Java, and to prevent pri-

“Ada continues being
widely used for

safety-critical systems
including military and
commercial avionics.”

Safety and Security: Certification Issues and Technologies

October 2008 www.stsc.hill.af.mil 13

ority anomalies) and memory management
(to avoid garbage collection interference).

The RTSJ, as an extension of the stan-
dard Java platform, is not appropriate (and
was not intended) for safety-critical appli-
cations. It is too complex and some of its
major features (especially in the memory
management area) require runtime checks
that may be expensive. However, it does
address Java’s real-time issues and, thus, is
serving as the basis for JSR 302’s safety-
critical Java specification. This in-progress
effort defines three levels of support for
safety-critical systems: (1) a traditional
cyclic executive (no threading); (2) a
thread-based approach with simple mem-
ory management; and (3) a thread-based
approach with more general memory
management. Each is characterized by a
corresponding subset of RTSJ functional-
ity and Java class libraries. JSR-302
exploits Java 1.5’s annotation feature: A
developer annotates various properties of
the code (for example, memory usage),
and static analysis tools verify the annota-
tions’ correctness.

Of all the language technologies that
are candidates for safety-critical develop-
ment, Java has the most significant chal-
lenges:
• The Virtual Machine execution envi-

ronment for Java programs is uncon-
ventional, blurring the distinction
between code and data and raising
safety certification issues.

• Unlike C++ and Ada (where OOT is
available but optional), Java is based
around object orientation. It is possible
to use Java without taking advantage of
OOT, but the style is contrived.

• Java is lexically and syntactically based
on C, therefore sharing a number of
that language’s traps and pitfalls.

• The RTSJ/JSR-302 approach to mem-
ory management is rather complicated,
and requires Java programmers to care-
fully analyze dynamic memory usage.
Despite these issues, there is interest in

safety-critical Java from both the develop-
er and the user communities. An organiza-
tion that has adopted Java as an imple-
mentation language on a project may have
some components with safety-critical
requirements, and keeping the entire sys-
tem within one language can simplify
some aspects of project management.

Conclusion
Developing safety-critical/high-security
systems is difficult. The key skill is not so
much the knowledge of a particular pro-
gramming language; a software profession-
al should be able to learn a new language
in a short amount of time. The more crit-

ical talent is the ability to think through a
design and implementation with a focus
not just on meeting a system’s functional
requirements but also on avoiding hazards
and vulnerabilities. Such negative program-
ming—ensuring that bad things do not
happen—requires careful analysis and a
defensive development approach that, in
turn, places demands on the programming
language and tools. For software safety and
security, the idea of minding your language is
more than a matter of etiquette; it could be
the key to a system’s success.u

References
1. RTCA SC-167/EUROCAE WG-12.

RTCA/DO-178B. Software Consid-
erations in Airborne Systems and
Equipment Certification. Dec. 1992.

2. Embry-Riddle Aeronautical University.
“Software Considerations in Airborne
Systems.” <http://forum.pr.erau.edu/
SCAS>.

3. Defense Acquisition University. De-
fense Acquisition Guidebook. 20 Dec.
2004 <http://akss.dau.mil/dag/>.

4. Vanfleet, W. Mark, et al. “MILS:
Architecture for High-Assurance
Embedded Computing.” Cross-
Talk Aug. 2005 <www.stsc.hill.af.
mil/crosstalk/2005/08/0508Van
fleet_etal.html>.

5. The Common Criteria Portal. Com-
mon Criteria for Information Tech-
nology Security Evaluation. Vers. 3.1.
Sept. 2006 <www.commoncriteriapor
tal.org/thecc.html>.

6. United Kingdom Ministry of Defense
and Praxis High Integrity Systems.
SafSec Methodology: Standard. 2 Nov.
2006 <www.praxis-cs.com/safsec/do
wnloads/SafSec_Methodolog y_
Standard_Material_pdf.pdf>.

7. Taylor, Carol, Jim Alves-Foss, and Bob
Rinker. “Merging Safety and Assur-
ance: The Process of Dual Certifica-
tion for Software.” STC 2002 <www.c
sds.uidaho.edu/papers/Taylor02d.pdf>.

8. Defense Science Board. Report of the
Defense Science Board Task Force on
Mission Impact of Foreign Influence
on DoD Software. Washington: Office
of the Under Secretary of Defense for
Acquisition, Technology, and Logis-
tics. Sept. 2007: 33.

9. Department of Transportation, FAA.
“Special Conditions: Boeing Model
787-8 Airplane; Systems and Data
Networks Security – Isolation or
Protection From Unauthorized Pass-
enger Domain Systems Access.”
Federal Register. 2 Jan. 2008.

10. Jackson, Daniel, Martyn Thomas, and
Lynette I. Millett, Eds. Software for

Dependable Systems: Sufficient
Evidence? Washington: National Aca-
demies Press. 27 Aug. 2007 <http://
books.nap.edu/catalog.php?record
_id=11923>.

11. International Organization for Stan-
dardization. ISO/IEC TR 15942,
Guide for the Use of Ada in High-
Integrity Systems. 2000 <http://std.d
kuug.dk/JTC1/SC22/WG9/n359.pdf>.

12. National Institute of Standards and
Technology. SAMATE – Software
Assurance Metrics and Tool Evalu-
ation. July 2005 <http://samate.nist.
gov>.

13. Meyer, Bertrand. Object-Oriented
Software Construction. 2nd ed. Santa
Barbara, CA: Prentice Hall PTR, 1997.

14. FAA. Handbook for Object-Oriented
Technology in Aviation. 26 Oct. 2004
<www.faa.gov/aircraft/air_cert/
design_approvals/air_software/oot>.

15. International Organization for
Standardization. ISO/IEC 9899: 1990;
Programming Languages - C.

16. MISRA-C: 2004. Guidelines For the
Use of the C Language in Critical
Systems. Nuneaton, U.K.: MISRA
Ltd., 2004.

17. International Organization for Stan-
dardization. ISO/IEC 14882: 2003;
Programming Languages – C++.

18. Lockheed Martin Corp. Joint Strike
Fighter Air Vehicle C++ Coding
Standards for the System Develop-
ment and Demonstration Program.
Dec. 2005 <www.jsf.mil/downloads/
documents/JSF_AV_C%2B%2B_
Coding_Standards_Rev_C.doc>.

19. MISRA-C++: 2008. Guidelines For
the Use of the C Language in Critical
Systems. Nuneaton, U.K.: MISRA
Ltd., 2004.

20. International Organization for Stan-
dardization. ISO/IEC 8652:1995/
Amd 1: 2007 Programming Languages
- Ada.

21. Dobbing, Brian, and Alan Burns. “The
Ravenscar Profile for Real-Time and
High Integrity Systems.” Cross-
Talk Nov. 2003 <www.stsc.hill.af.
mil/crosstalk/2003/11/0311Dobbing
.html>.

22. Barnes, John. High Integrity Software
– The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

23. Arnold, Ken, James Gosling, and
David Holmes. The Java Program-
ming Language. 4th ed. Addison
Wesley, 2006.

24. Community Development of Java
Technology Specifications. The Java
Community Process SM Program. 2008
<www.jcp.org/en/home/index>.

Development of Fault-Tolerant Systems

14 CROSSTALK The Journal of Defense Software Engineering October 2008

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

December 1-3
Defense Network Centric Operations

Arlington, VA
www.wbresearch.com/DNCO

December 1-4
26th Army Science Conference

Orlando, FL
www.asc2008.com

December 1-4
Interservice/Industry Training, Simulation,

and Education Conference
Orlando, FL

www.iitsec.org

December 7-10
Winter Simulation Conference

Miami, FL
http://wintersim.org

November 16-18
Software Engineering and Applications

Orlando, FL
www.iasted.org/conferences/

home-632.html

November 18-20
SpecOps East 2008
Fayetteville, NC

www.defensetradeshows.com/SPEC
OPSEAST08 _General_Info.html

November 18-22
Joint International Conference on

Engineering and Technology
Nashville, TN

www.ijme.us/IJME_Conference_2008/

April 20-23, 2009

21st Annual Systems and Software
Technology Conference

Salt Lake City, UT
www.sstc-online.org

Dear CrossTalk Editor,
Reading August’s 20th anniversary edi-
tion—especially Gary Petersen’s Cross-
Talk: The Long and Winding Road—trig-
gered my own early memories of the jour-
nal and the Software Technical Support
Center (STSC). I have always appreciated
CrossTalk, from the authors’ real-world
application of concepts to the “above-and-
beyond” assistance of your staff. We at
Northrop Grumman put what we learned
into practice.

In 1989, our group at Northrop (before
adding the Grumman) utilized your articles
on the Department of Defense’s (DoD)
requirements for the Capability Maturity
Model Integration (CMMI®) Level 3. While
I cannot remember the authors or titles,
these articles aided our logistics engineers
in developing a quality approach as we
started our transformation into what is
now much-renowned Software Engineer-
ing Processing Group.

In the mid-90s, Watts S. Humphrey—
who was, not surprisingly, part of the 20th
anniversary issue—was one of several
CrossTalk authors whose articles point-
ed the way toward DoD systems manage-
ment of large-scale software and systems
engineering integration. As well, articles on
software project management were one of
the tools used to kick off Northrop’s
CMMI Level 3 effort and organize a more
integrated project management approach
to B-2 software engineering.

Around this same time, the editorial
team of CrossTalk invited Northrop
personnel to participate in STSC meetings
and presentations, and introduced us to
senior DoD system managers. These ses-
sions were the genesis of our software
engineering and systems engineering break-
throughs. And, although it may seem like a
small gesture, supplying us with the pro-
ceedings from these gatherings helped edu-
cate and motivate our teams of software
engineers and supported our argument that
we needed new hardware and better com-
puter-aided software engineering tools.

We saved more than 100,000 man-
hours by implementing methodologies
gleaned from CrossTalk, equating to
approximately $8.3 million per year (in
1993 dollars) or $33 million over the four-
year period of development. This is quite a
savings when compared to our estimated
$121 million annual budget. We’ve all
received plentiful kudos for our achieve-
ments, but we would like to pass along
some of that gratitude to CrossTalk’s
authors and staff.

—John B. Burger
Northrop Grumman (retired)

4940 Flora Vista LN
Sacramento, CA 95822

<jjburger@aol.com>

LETTER TO THE EDITOR

About the Author

Benjamin M. Brosgol,
Ph.D., is a senior mem-
ber of the technical staff
at AdaCore. He has been
actively involved with the
Ada language effort since

its outset and has received the SIGAda
Outstanding Ada Community Contri-
butions award. Brosgol has a bachelor’s
degree in mathematics from Amherst
College, as well as master’s and doctorate
degrees in applied mathematics from
Harvard University.

AdaCore
104 Fifth AVE 15th FL
New York, NY 10011
Phone: (212) 620-7300
E-mail: brosgol@adacore.com

25. Community Development of Java
Technology Specifications. JSR 1:
RTSJ. 12 July 2006 <www.jcp.org/en/
jsr/detail?id=1>.

26. Community Development of Java
Technology Specifications. JSR 282:
RTSJ. 12 Sept. 2005 <www.jcp.org/
en/jsr/detail?id=282>.

27. Community Development of Java
Technology Specifications. JSR 302:
Safety Critical JavaTM Technology. 24
July 2006 <www.jcp.org/en/jsr/detail
?id= 302>.

Notes
1. This article is based on a tutorial,

“Safety and Security: An Analysis of
Certification Issues and Technolo-
gies,” presented by the author at the
Systems and Software Technology
Conference, 2008.

2. In this section, C means the 1990 ver-
sion of the ISO language standard [15].

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

October 2008 www.stsc.hill.af.mil 15

Ever since the September 11, 2001 ter-
rorist attacks, the United States has

been re-evaluating coordination for first
responders in disaster scenarios. First
responders must communicate reliably
and securely in times of crisis. However,
communication channels such as cell
phone networks may be impaired or
destroyed during disaster scenarios. Even
if communication was technically feasible
through these channels, extreme conges-
tion might render them useless for first
responders. Another problem is that these
channels are more vulnerable to compro-
mise: A malicious agent could steal a first
responder’s cell phone and intercept com-
munications. This can seriously under-
mine a first responder’s effectiveness in
crisis situations.

The first responders have three prima-
ry needs. They must be able to communi-
cate using devices they likely already have
and are well-accustomed with. Secondly,
the communication channel must be
secure in mobile environments. Finally,
while in a time of crisis, the consumer
communication infrastructure can some-
times be used, it cannot be relied upon
solely. WebBee addresses each of these
concerns.

Architecture
There are three major components of the
WebBee architecture (as shown in Figure 1
on the following page): the instant infra-
structure, the WebBee coordination server, and
the database server. The system has been
designed so that components can be dis-
tributed across different machines.

Certain field personnel are equipped
with battery-operated instant infrastruc-
ture backpack units. Equipment is com-
mercial off-the-shelf hardware, so very
large numbers of personnel can be outfit-
ted easily. Custom SMesh software [1]
helps maximize connectivity by dynami-
cally reorganizing the network topology as
personnel move about the field. The
WebBee coordination server is an abstrac-

tion of several components that coordi-
nate request handling, challenge-response
management, policy examination, applica-
tion hosting, and message dispatching.
The database server manages all data
interactions.

WebBee Coordination Server
Component Detail
WebBee Master Server and
Challenge Server Interaction
The WebBee master server negotiates
traffic from clients between the challenge
server and the application bridge. When a

client request comes in, the WebBee mas-
ter server stores it and asks the challenge
server whether the client needs to be
challenged. If the challenge server deter-
mines no challenge is needed, it tells the
WebBee master server that it is OK to
proceed. Otherwise, the challenge server
issues a challenge through the master
server to the client. The client’s solution
is sent back through the master server to

the challenge server. If it is invalid, the
challenge server informs the master serv-
er that no action is to be taken and the
client is informed that the request was
denied. If the solution is valid, the
WebBee master server retrieves the
client’s most recent request and dispatch-
es it to the application bridge. Our
model, therefore, assumes that clients will
only ever need a single request serviced at
a time.

Security
Our security mechanism is broken into
three separate subsystems: the challenge
server, upload security, and download
security. All are wrapped in a secure sock-
ets layer.

The Challenge Server
The challenge server’s job consists of
policies and challenges. Policies encode con-
ditions under which challenges are
required, and are arranged in a hierarchy:
If an agent passes one policy, there may
still be subsequent policies that must be
evaluated. The policy scheme for the
WebBee coordination server is depicted
in Figure 2 (see next page).

The first policy here is an application-
level test. This special policy grants full
access to certain applications, and
demonstrates that WebBee supports both
secure and non-secure applications. If
the application must be challenged, a tem-
poral policy is activated to determine if
the client’s last challenge-response has
expired. If it has expired, the client is
issued a challenge. The last policy is a
geospatial policy: If the user has strayed far
away from the set of last known global
positioning system (GPS) coordinates,
the client is challenged.

Policy intervals can be defined on a
per-user basis, based on the level of secu-
rity required for each client. At most, one
challenge will occur through a traversal of
this policy flowchart. Once the client
solves the challenge, his or her GPS coor-

WebBee: A Platform for Secure Mobile
Coordination and Communication in Crisis Scenarios

Recently, disaster scenarios and terrorist attacks have made apparent some fundamental shortcomings in first responders’ con-
ventional coordination infrastructures. For example, unsatisfactory device connectivity and security vulnerabilities made evident
by devices’ inherently mobile nature have the potential to seriously compromise first responders’ effectiveness. To address these
shortcomings, our team designed and built WebBee, a secure coordination and communication infrastructure. This article will
take a high-level look at WebBee’s architecture, and examine some interesting, non-trivial sample applications we have deployed
on top of it.

Sugih Jamin
University of Michigan1

“... [communication]
channels are more

vulnerable to a
compromise: a malicious
agent could steal a first
responder’s cell phone

and intercept
communications.This can

seriously undermine a
first responder’s
effectiveness ...”

Development of Fault-Tolerant Systems

16 CROSSTALK The Journal of Defense Software Engineering October 2008

dinates and a timestamp are stored in the
database.

When the policy flowchart deter-
mines that a challenge is required, the
server randomly selects one of several
possible challenges and issues it to the
client. If the client solves it, then the
request is serviced. Otherwise, the cur-
rent and all subsequent requests will also
be denied until the client successfully
solves the original challenge. This elimi-
nates malicious clients’ ability to game the
system by exploring the challenge space.

Currently, only text-based (e.g., pass-
word) challenges have been implement-
ed. With the right hardware, the challenge
system could be extended to issue other
kinds of challenges, such as biometric
challenges (e.g., fingerprint, voice, and/or
retinal scanning).

Upload Security
In our scalable crisis management sys-
tem, we are assuming that there are many
downloads but relatively few uploads.
With this in mind, we have decomposed
our security requirements into upload
and download security characteristics.

For upload security, if a handheld is
lost, we want to ensure that (1) data that
has already been posted cannot be repudi-
ated, and (2) data cannot be post-dated.
Our forward secure signatures use a pri-
vate key that evolves as a function of time;
the public key, however, remains the same.
This kind of forward-secure scheme was
proposed by Anderson [2] and imple-
mented by Bellare, Mihir, and Miner [3].

Download Security:The Quorum
System
For download security, scaling is an
important issue. For clients, we want to
require relatively few of their staff to
have to acquire new keys during a change
(e.g., departure or loss of device). The
quorum system implements download
security with these kinds of scalability
concerns in mind.

In the quorum system, agents need to
have a minimum number, k, of keyshares
to securely read a message. At initializa-
tion, each agent receives m keyshares,
where m > k, from a global keyshare set
consisting of a total of s keyshares. If a
user leaves, his or her shares are invali-
dated for all users. When a user has fewer
than k valid shares, they must obtain a
new set of valid keyshares from the glob-
al keyshare collection.

When the server broadcasts a mes-
sage, it first encrypts it under a message
key. This key, in turn, is itself encrypted s
times. The s-encrypted message keys and

Database

Challenge Server

WebBee Master Server

Applications Daemons

Client 1

Application Bridge

Client 2

Database ServerWebBee Coordination Server

Instant Infrastructure

Yes No

No Yes No Yes

Yes

No

Should this
application be
challenged?

No Yes

Is the user significantly
outside their normal
geographic path?

No

Yes

Has the
user’s last challenge

expired?

Do not
challenge

Challenge

A B C D E F G H I

Amanda’s
Key Shares

A B

C

E D
Bob’s

Key Shares

F C

H

E B
Carl’s

Key Shares

I G

A

E B

Global Key Shares

k = 3, m = 5

Figure 2: Policy Flowchart for the WebBee Coordination Server

Database

Challenge Server

WebBee Master Server

Applications Daemons

Client 1

Application Bridge

Client 2

Database ServerWebBee Coordination Server

Instant Infrastructure

Yes No

No Yes No Yes

Yes

No

Should this
application be
challenged?

No Yes

Is the user significantly
outside their normal
geographic path?

No

Yes

Has the
user’s last challenge

expired?

Do not
challenge

Challenge

A B C D E F G H I

Amanda’s
Key Shares

A B

C

E D
Bob’s

Key Shares

F C

H

E B
Carl’s

Key Shares

I G

A

E B

Global Key Shares

k = 3, m = 5

Figure 3: Amanda, Bob, and Carl Initially All Have Valid Keyshares

Database

Challenge Server

WebBee Master Server

Applications Daemons

Client 1

Application Bridge

Client 2

Database ServerWebBee Coordination Server

Instant Infrastructure

Yes No

No Yes No Yes

Yes

No

Should this
application be
challenged?

No Yes

Is the user significantly
outside their normal
geographic path?

No

Yes

Has the
user’s last challenge

expired?

Do not
challenge

Challenge

A B C D E F G H I

Amanda’s
Key Shares

A B

C

E D
Bob’s

Key Shares

F C

H

E B
Carl’s

Key Shares

I G

A

E B

Global Key Shares

k = 3, m = 5

Figure 1: WebBee Component Architecture

WebBee: A Platform for Secure Mobile Coordination and Communication in Crisis Scenarios

October 2008 www.stsc.hill.af.mil 17

the encrypted message are sent to all
agents who decrypt the message keys
using their personal keysets. If exactly k
of the keys are identical, it is valid and the
agent proceeds to decrypt the encrypted
message with that decrypted message key.

Figures 3, 4, and 5 depict a scenario in
which k = 3 and m = 5. In Figure 3,
Amanda, Bob, and Carl all have a quorum
of valid keyshares. In Figure 4, when Bob
leaves, three of Amanda’s keyshares are
invalidated, forcing her to obtain new
shares. Carl only has two shares invalidat-
ed; he can continue to operate. Figure 5
depicts the scenario in which Amanda
has reported a lost or stolen handheld, in
which case all of Amanda’s keyshares are
invalidated. In this instance, Carl must
reacquire new keyshares to operate.

Application Bridge
The application bridge dispatches
requests to the appropriate application
daemon via an ID embedded in the
request header. If a response is generat-
ed, it is sent back through the WebBee
master server to the client. Gas Prices,
Event Reports, and Agent Contingency
and Action Coordinator (AC2) are three
applications we have built using the
WebBee framework.

Gas Prices
The Gas Prices application allows clients
to determine the gas stations with the
cheapest prices. A client initially sends a
request containing his or her GPS coor-
dinates. The Gas Prices daemon con-
structs a map through an implementation
of the U.S. Census Bureau’s Topologically
Integrated Geographic Encoding and
Referencing (TIGER) geographic infor-
mation system (GIS) database [4], then
queries a Web site that publishes up-to-
date gas prices and sends it back to the
client.

Gas Prices and other applications use
the WebBee scraping engine to obtain
data from the Web. For each application,
a scraping script identifies the data compo-
nents of interest in a Web page. Any sta-
tic or dynamic data can be acquired—
including text, images, and audio.

Event Reports
The Event Reports application (see Figure
6, next page) allows clients to log incidents
that they observe in the field. Other
clients are notified about these incidents
only once they become geospatially rele-
vant. Clients specify details about an inci-
dent by typing out a short message—as
well as a radius in meters—on the hand-
held device. As other clients move in

range, their handhelds are notified via the
short messaging service (SMS). This
relieves clients of having to sift through
reports to determine which are immedi-
ately important, enabling him or her to
react faster and more effectively.

A scenario is shown in Figure 7 (see
next page). A report about a fire at the
Chicago Mercantile Exchange (A) is sub-
mitted. One fire department unit (B) and
two police department units (C) and (F)
receive the alert about the fire. Another
report about an unrelated incident is sub-
mitted by an informant across the city

(D). Here, one fire department unit is
alerted (E), as is one police department
unit (F). Notice that (F) receives alerts
about both incidents since it is in range of
both. By contrast, another police depart-
ment (G) receives no alerts. As soon as G
moves into range (if ever), they will
receive the report.

Event Reports – Exploiting Database
Triggers for Better Performance
Report notifications to clients are imple-
mented through database triggers. The
WebBee database server contains an

A B C HE F G I

Amanda
must obtain
new shares

A B

C

E D
Bob

departed

F C

H

E B
Carl can

continue to
operate

I G

A

E B

Global Key Shares

k = 3, m = 5

A B C D E F G H I

Amanda’s
keys are

invalidated

A B

C

E D
Bob

departed
Carl must

obtain new
shares

I G

A

E B

Global Key Shares

k = 3, m = 5

D

Figure 5: Amanda Reports Lost or Stolen Handheld

A B C HE F G I

Amanda
must obtain
new shares

A B

C

E D
Bob

departed

F C

H

E B
Carl can

continue to
operate

I G

A

E B

Global Key Shares

k = 3, m = 5

A B C D E F G H I

Amanda’s
keys are

invalidated

A B

C

E D
Bob

departed
Carl must

obtain new
shares

I G

A

E B

Global Key Shares

k = 3, m = 5

D

Figure 4: Bob Leaves

Development of Fault-Tolerant Systems

18 CROSSTALK The Journal of Defense Software Engineering October 2008

information server, which is a Postgres
database with a PostGIS [5] extension
that is integrated with an instance of a
visualization server in an application dae-
mon. The visualization server renders
map data for visualization [6] in concert
with an instance of a TIGER database
[4]. When a client enters an event report
region, the database triggers the insertion
of a new record into a special table.
Meanwhile, the event reports daemon
monitors this table. If there are any new

entries, the daemon creates an SMS and
sends it to the target user. The heavy lift-
ing for this mechanism is done through
an extension of Postgres triggers
(Figures 8 and 9 show an example for
alpha-numeric and spatial range triggers),
resulting in fewer queries and better per-
formance.

Trigger support in Postgres is table-
based and comparatively primitive: with n
table triggers, an update will cause n oper-
ations to occur, resulting in decreased

performance if updates are frequent.
Also, Postgres does not provide out-of-
the-box support for multi-table triggers.
This becomes a problem, for example,
with mixed notifications.

To address these problems, we have
implemented a trigger meta table, which
encodes relationships between trigger
class identifiers and ownership, and is ref-
erenced before trigger evaluations. Con-
sider the mixed notification: “NOTIFY
me WHEN I come WITHIN 2 miles of a
gas station WITH a gas price LOWER
THAN $3.50.” When the user’s location is
updated, the trigger meta table is exam-
ined on the user ID trigger class identifier.
When gas prices are updated, entries in
the meta table are examined on the gas
station ID and the trigger class identifier.
Performance is up to eight times faster
than without the meta table for alpha-
numeric triggers (Figure 8), and up to 10
times faster for spatial range triggers
(Figure 9). Performance increases as the
total number of triggers increases.

Agent Contingency and Action
Coordinator
Another application that we have built is
an AC2 application, which provides a full-
text, voice, and picture messaging system.
Messages may be sent directly to individ-
ual clients or by radius. The radius message
mechanism works as follows: The sender
specifies his or her GPS coordinates and
radius in meters within the message head-
er. When the message is sent to the serv-
er, all agents’ last known GPS coordinates
are examined. The message is sent to all
agents in the defined circle. Radius mes-
saging might be useful, for example, for

Figure 6: Mobile Client Screenshots for the Event Reports System

Figure 7: An Example Event Reports Scenario

WebBee: A Platform for Secure Mobile Coordination and Communication in Crisis Scenarios

October 2008 www.stsc.hill.af.mil 19

the dissemination of orders to all agents
within a specific location.

Another innovative feature of AC2 is
message withdrawal. If a client has sent a
message and then later circumstances
change and they no longer want the mes-
sage to be read by other agents, they can
withdraw the message; it will be removed
from the inboxes of all agents to whom
the user sent it. This is useful in situations
in which agents have decided a reported
incident has stopped being of interest.
For example, if an agent initially reports
seeing a suspicious package, but later
determines that it is not a threat, they can
withdraw the message to prevent confu-
sion among the other agents. All mes-
sages—including withdrawn messages—
persist in the WebBee server log so as to
provide a traceable audit trail.

Conclusion
WebBee is a robust, mobile, scalable com-
munications and coordination framework
that can handle several applications at var-
ious levels of security. The challenge-
response and quorum systems are scalable
mobile security paradigms that are appro-
priate for our system. The implementation
of a policy hierarchy strikes a nice balance
between client situation-dependent securi-
ty and future extensibility. Finally, database
optimizations—like trigger meta tables
and streamlined indexing—impart signifi-
cant performance gains to our system.u

References
1. Distributed System and Networks Lab

at Johns Hopkins University. “SMesh.”
2008 <www.smesh.org>.

2. Anderson, R. Invited Lecture. Fourth
Annual Conference on Computer and
Communications Security, 1997.

3. Bellare, Mihir, and Sara K. Miner. “A
Forward-Secure Digital Signature
Scheme.” Lecture Notes in Computer
Science 1666: 431-448, 1999.

4. United States Census Bureau.
“Topologically Integrated Geographic
Encoding and Referencing System.”
United States Census Bureau. 2008
<www.census.gov/geo/www/tiger>.

5. Refractions Research. “PostGIS.” 2007
<http://postgis.refractions.net/>.

6. MapServer. University of Minnesota.
2008 <http://mapserver.gis.umn.edu>.

Note
1. Primary Investigators: Sugih Jamin,

Zhuoqing Mao, T. V. Lakshman, Sarit
Mukherjee, Jignesh Patel, and Limin
Wang. Students, past and present:
Brendan Blanco, Hyunseok Chang,
Yun Jason Chen, Søren Dreijer, Matt
England, Joe Flint, Alex Garcia, Dan
Harris, Todd Hopfinger, Dan Konson,
Neil Panky, Jeff Powers, Bob Sprentall,
Patrick Turley, John Umbaugh, Krian
Upatkoon, Wenjie Wang, Zhiheng
Wang, and Byung Suk Yang.

Alpha-Numeric Triggers

with meta table without meta table

100

10

1

0.1

Total Number Triggers (log scale)

U
p
d
a
te
s/
S
e
co
n
d
(l
o
g
sc
a
le
)

10 100 1,000 10,000

Spatial Range Triggers

with meta table without meta table

100

10

1

0.1

Total Number Triggers (log scale)

U
p
d
a
te
s/
S
e
co
n
d
(l
o
g
sc
a
le
)

10 100 1,000 10,000

Figure 8: Meta Table Performance Comparison for Alpha-Numeric
Triggers

Figure 9: Meta Table Performance Comparison for Spatial Range
Triggers

About the Author

Sugih Jamin is an asso-
ciate professor of com-
puter science at the
University of Michigan.
His research interests lie
in Internet measurement,

protocol, as well as infrastructure design
and deployment. He has earned many
awards including the Sloan Foundation
Fellowship, the National Science Found-
ation Faculty Early Career Development
Award, and the White House Presiden-
tial Award. Jamin is also the chief techni-
cal officer and co-founder of Zattoo, a
prominent startup that develops technol-
ogy for delivering television content over
the Internet. In addition to WebBee, his
research at the University of Michigan
includes building protocols, architec-
tures, and mechanisms to support new
uses of computer networks, as well as
measuring, studying, and characterizing
Internet topology and traffic.

The Electrical Engineering and
Computer Science Department
University of Michigan
Ann Arbor, MI 48109-2121
Phone: (734) 763-1583
Fax: (734) 763-1260
E-mail: jamin@eecs.umich.edu

Alpha-Numeric Triggers

with meta table without meta table

100

10

1

0.1

Total Number Triggers (log scale)

U
p
d
a
te
s/
S
e
co
n
d
(l
o
g
sc
a
le
)

10 100 1,000 10,000

Spatial Range Triggers

with meta table without meta table

100

10

1

0.1

Total Number Triggers (log scale)

U
p
d
a
te
s/
S
e
co
n
d
(l
o
g
sc
a
le
)

10 100 1,000 10,000

20 CROSSTALK The Journal of Defense Software Engineering October 2008

Software Engineering Technology

The widespread advancements in tech-
nology have encouraged the demand

for large-scale problem solving. This has
resulted in substantial investments of
time, money, and other resources for com-
plex engineering projects such as hybrid
communication systems, state-of-the-art
defense systems, and technologically
advanced aeronautics systems. Unfortu-
nately, the expenditures are belied by the
failure of such systems. Plagued by evolv-
ing needs, volatile requirements, market
vagaries, technology obsolescence, and
other factors of change, a large number of
projects are prematurely abandoned or are
catastrophic failures [1, 2, 3]. The inherent
complexity of these systems, compounded
by their lengthy development cycles, is fur-
ther exacerbated by utilizing development
methods that are hostile to change.
Moreover, this complexity often results in
emergent behavior [4] that is unexpected.
For example, the introduction of a new
functionality in the system can result in
unanticipated interactions with other exist-
ing components that can be detrimental to
the overall system functionality.

More recently, techniques such as the
performance-based specifications (PBSs)
[5, 6] and capability-based acquisition
(CBA) [7] are being utilized to mitigate
change in large-scale systems. PBSs are
requirements describing the outcome
expected of a system from a high-level
perspective. The less detailed nature of
these specifications provides latitude for
incorporating appropriate design tech-
niques and new technologies. Similarly,
CBA is expected to accommodate change
and produce systems with relevant capa-
bility and current technology. It does so by
both delaying requirement specifications
in the software development cycle and
allowing time for a promising technology
to mature so that it can be integrated into
the software system. However, the PBS
and CBA approaches lack a scientific pro-
cedure for deriving system specifications
from an initial set of user needs. More-

over, they neglect to define the level of
abstraction at which a specification or a
capability is to be described. Thus, these
approaches propose solutions that are not
definitive, comprehensive, or mature
enough to accommodate change or bene-
fit the development process for complex
emergent systems.

In order to function acceptably over
time, complex emergent systems must
accommodate the effect of dynamic fac-
tors—such as varying stakeholder expec-

tations, changing user needs, advancing
technology, scheduling constraints, and
market demands—during their lengthy
development periods. We conjecture that
these changes can be achieved with mini-
mum impact if systems are architected
using aggregates that are embedded with
change-tolerant characteristics. Such ag-
gregates are defined as capabilities.

Capabilities are functional abstractions
that populate the space between needs and
requirements. As such, they (a) are more
rigorously defined than user needs, (b)
retain crucial context information inher-
ent to the problem space, but at the same
time (c) avoid solution specification com-
mitments ascribed to requirements.
Capabilities are constructed so that they
exhibit high cohesion, low coupling, and

balanced abstraction levels. The property
of high cohesion helps localize the impact
of change to within a capability. Also, the
ripple effect of change is less likely to
propagate beyond the affected capability
because of its reduced coupling with
neighboring capabilities [8]. The balanced
level of abstraction assists in understand-
ing the embedded functionality in terms
of its most relevant details [9]. Addition-
ally, we observe that the abstraction level
is related to the size of a capability; the
higher the abstraction level, the greater the
size of a capability [10]. From a software
engineering perspective, abstractions with
a smaller size are more desirable for imple-
mentation.

Capabilities are generated using a
capabilities engineering (CE) process.
Specifically, this approach employs a
unique algorithm and a set of well-
defined metric computations that exploit
the principles of decomposition, abstrac-
tion, and modularity to identify functional
aggregates (i.e., capabilities). Such capabil-
ities embody the desirable software engi-
neering attributes of high cohesion, low
coupling and balanced abstraction levels.
Change-tolerance is achieved through the
embodiment of such attributes. The inte-
gration of the CE process with existing
development paradigms, and the exploita-
tion of enhanced traceability that accom-
panies it, are expected to reveal more
effective methods for designing, building,
and maintaining software for real-world
systems. This results in a capability-based
system specification that is change-toler-
ant, permitting a just-in-time specification
of requirements, and an incremental
development cycle that can span long
periods of time.

The CE Process
The problem of changing requirements,
especially in developing large complex sys-
tems, is well established [11]. Software
development processes that are ill-
equipped to accommodate change are pri-

Constructing Change-Tolerant Systems
Using Capability-Based Design

Large-scale, complex emergent systems demand extended development life cycles. Unfortunately, the inescapable introduction
of change over that period of time often has a detrimental impact on quality, and tends to increase associated development
costs. In this article, we describe a capability-based approach to evolving change-tolerant systems; that is, systems whose enti-
ties (or capabilities) are highly cohesive, minimally coupled, and exhibit balanced levels of abstraction.

Dr. James D. Arthur and Ramya Ravichandar
Virginia Tech

“... changes can be
achieved with minimum
impact if systems are

architected using
aggregates that are

embedded with
change-tolerant
characteristics.”

Constructing Change-Tolerant Systems Using Capability-Based Design

October 2008 www.stsc.hill.af.mil 21

marily afflicted with requirements volatili-
ty [12]. This phenomenon is known to
increase the defect density and affect pro-
ject performance resulting in schedule and
cost overruns [2, 13]. Traditional require-
ments engineering (RE) strives to manage
volatility by baselining requirements.
However, the dynamics of user needs and
technology advancements during the
extended development periods of com-
plex emergent systems discourage fixed
requirements.

Our approach, the CE process, builds
change-tolerant systems on the basis of
optimal sets of capabilities. Figure 1 illus-
trates the two major phases of the CE
process. Phase I identifies sets of capabil-
ities based on the values of cohesion, cou-
pling, and abstraction levels. Phase II, a
part of our ongoing research, further opti-
mizes these initial sets of capabilities to
accommodate schedule constraints and
technology advancements. The CE pro-
cess is discussed further in the following
section.

The capabilities identification algo-
rithm (also described in the following sec-
tion) employs measures of cohesion, cou-
pling, and abstraction to identify candidate
sets of capabilities that necessarily and
sufficiently embody the desired system
functionality. Once identified, they can be
further optimized to suit schedule and/or
technology constraints; but because capa-
bilities are formulated from user needs,
our efforts required focus on needs analy-
sis, a phase prior to requirements specifi-
cation. At this point, we consider only the
functional aspects of a system.

Computing Capabilities: The
Algorithm
Capabilities are determined mathematical-
ly from a function decomposition (FD)
graph (see Figure 2). This is an acyclic
directed graph, implicitly derived from
user needs, and represents system func-
tionality at various levels of abstraction.
The highest abstraction level, represented
by the root node, connotes the mission of
the system; the lowest levels of abstrac-
tion (i.e., the leaves), represent directives.
Directives are low-level characteristics of
the system formulated in the language of
the problem domain. They differ from
requirements in that requirements are for-
mulated using language and terminology
inherent to the more technically oriented
solution domain. Thus, capabilities are
identified after the elicitation of needs but
prior to the formalization of technical sys-
tem requirements. This unique spatial
positioning permits the definition of

capabilities to be independent of any par-
ticular development paradigm. We envi-
sion that by doing so, capabilities can
bridge the chasm between the problem
and the solution space, also described as
the complexity gap [14]. It is recognized that
this gap is responsible for information
loss, misconstrued needs, and other detri-
mental effects that plague system develop-
ment [15, 16].

To identify capabilities, we need to
examine all possible functional abstrac-
tions of a system represented in the FD
graph. Intuitively, the algorithm for com-
puting the desired set of capabilities is a
five-step process that produces slices
through the FD graph. We define a slice to
be any subset of interior nodes of the FD
graph such that their respective frontiers
uniquely cover all directives. We select the
slice containing the set of interior nodes
that are maximally cohesive, minimally
coupled, and exhibit balanced levels of
abstraction. In effect, this slice contains
the desired set of capabilities.

The following sub-sections outline the
process for identifying the slice containing
the desired set of capabilities.

Step 1: Constructing the Functional
Decomposition Graph
An FD graph represents functional
abstractions of the system obtained by the
systematic decomposition of user needs.
A need at the highest level of abstraction
is the mission of the system and is repre-
sented by the root. We use the top-down
philosophy to decompose the mission into
functions at various levels of abstraction.
We claim that a decomposition of needs is
equivalent to a decomposition of func-
tions because a need essentially represents
some functionality of the system.
Formally, we define an FD graph G =
(V,E) as an acyclic directed graph where
V is the vertex set and E is the edge set.
V represents the system’s functionality:
Leaves represent directives, the root sym-
bolizes the mission, and internal nodes
indicate system functions at various
abstraction levels. Similarly, the edge set E
comprises edges that depict decomposi-
tion, intersection, or refinement relation-
ships among nodes. These edges are illus-
trated in Figure 2. An edge between a par-
ent and its child nodes represents function-
al decomposition and implies that the

Impact of Directive
Omission

Description of Impact on Associated
Parent Task

Relevance
of Directive

Catastrophic Task failure 1.00

Critical Task success questionable 0.70

Marginal Reduction in performance 0.30

Negligible Non-operational impact 0.10

Needs Capabilities
Decomposition

Finalized
Capabilities

Transformation

Phase II

Phase I

M

n2 n3

n4

n6 n7 n8 n10 n11

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

0.3
0.1 0.7

0.1
0.3 1 1

0.7 0.1 0.3 0.3 0.1

0.7 0.1

0.3
0.1

n5

refinement

decomposition
intersection

Directives

Mission
Functional

Abstractions

n9

n1

Optimized
Capabilities Optimization

Relevance
Values

Directives

Directives

DirectivesRequirements

Figure 1: The CE Process

Figure 2: Example FD Graph G = (V,E)

Refinement

Decomposition
Intersection

Figure 2: Example FD Graph G = (V,E)

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering October 2008

functionality of the child is a proper sub-
set of the parent’s functionality. Only
internal (non-leaf) nodes with an outde-
gree of at least 2 can have valid decompo-
sition edges with their children. The
refinement edge is used when there is a
need to express a node’s functionality with
more clarity, say, by furnishing additional
details. A node with an outdegree of 1
symbolizes this type of relationship with
its child node. To indicate the commonal-
ities between functions defined at the
same level of abstraction, the intersection
edge is used. Hence, a child node with an

indegree greater than 1 represents a func-
tionality common to all its parent nodes.
The FD graph utilizes these definitions to
provide a structured top-down representa-
tion of system functionality, thereby facil-
itating the formulation of capabilities in
terms of their cohesion, coupling, and
abstraction values. We discuss those com-
putational mechanics next.

Step 2: Computing Cohesion and
Coupling Values
Only interior nodes are considered as
capability candidates. For each interior

node, its cohesion value is directly propor-
tional to how important its children nodes
are to achieving its defined functionality.
Coupling, on the other hand, is a pair-wise
relationship between two interior nodes
and reflects the probability that a change
in one node will have an impact on the
other. The cohesion value for each node
and the coupling value for each set of
pair-wise nodes are computed using the
FD graph G, and these measures are
described next.
• Cohesion. The cohesion of a node is

computed as an average of the rele-
vance values of the participating direc-
tives. The relevance values are assigned
based on the values listed in Table 1.
However, we make a distinction
between the parent and ancestor nodes
of a directive. In order to reduce the
need for user input, we elicit the rele-
vance value of a directive only with
respect to its parent node. Figure 2
illustrates relevance values of direc-
tives to their parents.

Assuming that each directive can
be associated with a unique parent
node (the validity of this assumption is
established in [17]), then the cohesion
for any node n can be computed (as
shown in Figure 3).

• Coupling. To measure coupling, we
need information about dependencies
between system functionalities. By
virtue of its construction, the struc-
ture of the FD graph represents the
relations between different aggregates.
In particular, we compute coupling
between two nodes in terms of their
directives. Two directives are said to be
coupled if a change in one affects the
other. We compute this effect as the
probability that such a change occurs
and propagates along the shortest path
between them. Note that the coupling
measure is asymmetric.

For two nodes p and q, the cou-
pling between them is computed (as
shown in Figure 4).

Step 3: Identifying the Candidate Set
of Slices
Recall that slices are sets of nodes that
necessarily and sufficiently cover all direc-
tives identified in the FD graph.
Moreover, no slice contains the mission
node (M). We compute all possible slices
and then rank them. The first ranking
(high to low) is based on the average cohe-
sion of each slice’s constituent nodes; the
second ranking (low to high) is based on
the average coupling of each slice’s con-
stituent nodes. The top 10 slices (an arbi-
trary count) common to both sets are then

Impact of Directive
Omission

Description of Impact on Associated
Parent Task

Relevance
of Directive

Catastrophic Task failure 1.00

Critical Task success questionable 0.70

Marginal Reduction in performance 0.30

Negligible Non-operational impact 0.10

Table 1: Relevance Values

(a) if node n has only directives as its children, then its cohesion is the arithmetic mean of
the relevance values of the associated directives, i.e.:

()

nnodewithassociateddirectivesoftotal

idirectiveforvaluerelevance

nCoh nnodewithassociated
idirectiveeachfor

#
)(=

(b) for all other nodes:

() ()[]

()
=

nnodewithassociated
ichildimmediateeachfor

nnodewithassociated
ichildimmediateeachfor

ichildwithassociateddirectivesof

ichildofcohesionichildwithassociateddirectivesof

nCoh
#

#

)(

()

=

qnodewithassociated
directivesofnumbertotal

pnodewithassociated
directivesofnumbertotal

q)(p,Cp lyrespectiveq,andpnodeswithassociated
jandidirectivepairwiseeachfor

node

jdirectiveandidirectivebetweencoupling

where the coupling between two directives i and j is computed as:

()
=

jdirectiveandidirectiveconnecting
pathshortestoflength

jiCpdirective
changewilljdirectivethatyprobabilit),(

and where the probability that directive j will change is computed as:

=

jdirectiveofnodeparentwith
associateddirectivesoftotal

jPrbChg
#

1)(

Figure 4: Equation for Computing Coupling Between Nodes

(a) if node n has only directives as its children, then its cohesion is the arithmetic mean of
the relevance values of the associated directives, i.e.:

()

nnodewithassociateddirectivesoftotal

idirectiveforvaluerelevance

nCoh nnodewithassociated
idirectiveeachfor

#
)(=

(b) for all other nodes:

() ()[]

()
=

nnodewithassociated
ichildimmediateeachfor

nnodewithassociated
ichildimmediateeachfor

ichildwithassociateddirectivesof

ichildofcohesionichildwithassociateddirectivesof

nCoh
#

#

)(

()

=

qnodewithassociated
directivesofnumbertotal

pnodewithassociated
directivesofnumbertotal

q)(p,Cp lyrespectiveq,andpnodeswithassociated
jandidirectivepairwiseeachfor

node

jdirectiveandidirectivebetweencoupling

where the coupling between two directives i and j is computed as:

()
=

jdirectiveandidirectiveconnecting
pathshortestoflength

jiCpdirective
changewilljdirectivethatyprobabilit),(

and where the probability that directive j will change is computed as:

=

jdirectiveofnodeparentwith
associateddirectivesoftotal

jPrbChg
#

1)(

Figure 3: Equation for Computing Node Cohesion

Constructing Change-Tolerant Systems Using Capability-Based Design

October 2008 www.stsc.hill.af.mil 23

chosen to form the pruned candidate set
and represent those slices that have the
highest average cohesion and lowest aver-
age coupling.

Step 4: Computing Balanced
Abstraction Levels
In the next step, we individually examine
each of the 10 slices with the objective of
iteratively decomposing constituent nodes
to achieve a balanced level of implemen-
tation abstraction. The decomposition
process consists of replacing a parent
node with its children nodes. We observe
that as nodes are decomposed the abstrac-
tion level becomes lower—that is, the
node sizes decrease but the coupling val-
ues increase (size is the number of direc-
tives associated with an interior node). We
strive to identify nodes of reduced sizes in
line with the principles of modularization,
but only if the increase in coupling is
acceptable. There are two possible scenar-
ios when attempting to lower the abstrac-
tion level of a node: The replacement
(children) nodes have lower-level common
functionality, or they have no common
functionality. Referring again to the FD
Graph in Figure 2, suppose that one of
the candidate slices is {n1, n4, n5}.
• Common Functionality. Assume

that the size of n1 is too large, and
hence, we attempt to reduce its
abstraction level to its children, viz. n2
and n3, which are of a relatively small-
er size. We observe, however, that
these nodes share a common function-
ality represented by n7. This implies
that one of the links, (n2, n7) or (n3,
n7), needs to be broken in order to
implement n7 as a part of a single-par-
ent capability. Let (n2, n7) be broken,
and n7 be implemented as a part of n3.
Consequently, capabilities n2 and n3 are
content-coupled [16] because n2 may
attempt to manipulate the n7 part
embodied in n3. Thus, lowering the
abstraction level of n1 results in capa-
bilities of decreased sizes, but with
increased coupling.

• No Common Functionality. Now we
consider the reduction of n4 to smaller-
sized nodes, n9 and n10. Note that the
proposed reduction has no commonali-
ties. We observe that there is a marginal
increase in coupling, but that nodes n9
and n10 are of smaller sizes when com-
pared to n4. Thus, we choose n9 and n10
over their parent n4. We are willing to
accommodate this negligible increase in
coupling for the convenience of
increased modularity, a decision based,
in part, on subjective evaluation.

Hence, we iteratively compute the

appropriate abstraction level for each node
in the set of slices identified in Step 3, and
perform the appropriate decomposition
substitutions. Because the nodes selected
for abstraction balancing are in the set of
slices resulting from Step 3, they also
exhibit high cohesion and low coupling.

Step 5: Selecting the “Optimal” Set
of Capabilities
As the final step, we re-compute the aver-
age coupling and cohesion values for each
of the 10 slices. The slice having the best bal-
ance between high cohesion and low coupling is
selected as the set of capabilities for the system.

A Validation of the Current
Work
We empirically tested the hypothesis that a
system design based on capabilities is more
change-tolerant than a design generated
from the traditional RE approach. More
specifically, we examined the impact of
changing needs on the RE- and CE-based
designs of a course evaluation system [17].
The original high-level design of this sys-
tem is based on an RE approach and is
termed RE-based design. The CE-based
design was constructed using a capabilities
approach for the system. To determine the
optimal capability set, we constructed an
FD graph and then applied the algorithm
described earlier. This resulted in a total of
1,495 slices, from which the slice contain-
ing the set of nodes exhibiting the highest
average cohesion, lowest average coupling,
and a balanced abstraction level was select-
ed as the desired capabilities of the course
evaluation system. The CE-based design
was constructed based on the chosen capa-
bility set.

The RE- and CE-based designs were
then subjected to various changes in needs.
In particular, we examined the impact of
six different needs’ changes on the course
evaluation system. An example of a need
change is, “The users need information
about the handicapped-accessible facilities
for courses taught in Room X.” We propa-
gated each change on the RE- and CE-
based designs and recorded the number of
affected classes. We performed the
Wilcoxon Signed-Rank test, the non-para-
metric alternative to the paired t-test, which
results in a P-value of 0.018. The P-value
indicates the probability that the popula-
tion medians of the number of affected
classes in the RE- and CE-based designs
are different because of chance. The very
small P-value compels us to reject the null
hypothesis that the change-tolerance of the
system is indifferent to either the RE or the
CE approach. Thus, the alternate hypothe-

sis that the number of impacted classes in
the CE-based design is significantly less
than that of the RE-based design is true.
This result is in agreement with our
research claim that the change-tolerance of
a system improves with the use of a design
based on capabilities.

Summary
The current and proposed work addresses
several issues associated with the design,
evolution, and emergent behavior of
large-scale, real-world software systems.
As stated in this article, CE provides a
first-level architectural decomposition of
the software system. Modularity and rea-
soned aggregation are cornerstones for
identifying change-tolerant functional
units. The underlying algorithm, employ-
ing metric-based computations, extends
needs analysis to produce sets of capabili-
ties enumerating multiple composition
choices and, at the same time, indicates
the advantages/disadvantages of selecting
one set over the other. The use of capa-
bilities also permits the delayed commit-
ment of needs to requirements which, in
turn, support the integration of new tech-
nology throughout the (extended) soft-
ware development effort. Moreover, be-
cause capabilities are designed to be loose-
ly coupled, they facilitate emergent behav-
ior through the addition/deletion of func-
tionality as new operational conditions
and constraints evolve. Finally, we expect
capabilities to support earlier architectural
analysis, leading to the design of systems
that better accommodate non-functional
requirements like performance, security,
and reliability.u

References
1. Deal, D.W. “Beyond the Widget:

Columbia Accident Lessons Affirm-
ed.” Air Space Power XVIII 2 (2004):
31-50.

2. Glass, R.L. Software Runaways: Monu-
mental Software Disasters. Upper
Saddle River, NJ: Prentice Hall, 1998.

3. Jazequel, J.M., and B. Meyer. “Design
By Contract: The Lessons of Ariane.”
Computer 30 (1997): 129-130.

4. Heylighen, F. Self-Organization, Em-
ergence, and the Architecture of Com-
plexity. Proc. of the First European
Conference on System Science. Paris,
France, 1989: 23-32.

5. Tull, G.A. Guide for the Preparation
and Use of Performance Specifi-
cations. Department of Defense
(DoD) AMC Pamphlet. Alexandria,
VA., 1999: 715-17.

6. DoD. Guidebook for Performance-
Based Services Acquisition. DoD

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering October 2008

Acquisition, Technology, and Log-
istics. 2002 <www.acq.osd.mil/dpap/
Docs/pbsaguide010201.pdf>.

7. Montroll, M., and E. McDermott.
“Capability-Based Acquisition in the
Missile Defense Agency.” Storming
Media (2003) <www.stormingmedia.
us/82/8242/A824224.html>.

8. Haney, F.M. Module Connection
Analysis – A Tool for Scheduling
Software Debugging Activities. Proc.
of AFIPS Joint Computer Conference.
Boston, MA., 1972: 173-179.

9. Parnas, D.L., P. Clements, and D.
Weiss. The Modular Structure of
Complex Systems. Proc. of the
Seventh International Conference on
Software Engineering. Orlando FL.,
1984: 408-417.

10. Ravichandar, R., J.D. Arthur, and R.P.
Broadwater. Reconciling Synthesis and
Decomposition: A Composite Ap-
proach to Capability Identification.
Proc. of the 14th Annual IEEE Inter-
national Conference and Workshop on
the Engineering of Computer-Based
Systems. Tucson, AZ., 2007: 287-296.

11. Curtis, B., H. Krasner, and N. Iscoe. “A
Field Study of the Software Design
Process for Large Systems.” Com-
munications of the ACM 31 (1998):
1268-1287.

12. Harker, S.D.P., K.D. Eason, and J.E.
Dobson. The Change and Evolution
of Requirements as a Challenge to the
Practice of Software Engineering.
Proc. of the IEEE International Sym-
posium on Requirements Engineering.
San Diego, CA., 1993: 266-272.

13. Zowghi, D., and N. Nurmuliani. A
Study of the Impact of Requirements
Volatility on Software Project Perfor-
mance. Proc. of the Ninth Asia-Pacific
Software Engineering Conference.
Gold Coast, Australia, Dec. 2002: 3.

14. Racoon, L.B.S. “The Complexity
Gap.” ACM SIGSOFT Software Engi-
neering Notes. 1995.

15. Lauesen, S., and O. Vinter. “Preventing
Requirements Defects: An Experi-
ment in Process Improvement.” Re-
quirements Engineering 6 (2001): 37-50.

16. Zave, P., and M. Jackson. “Four Dark
Corners of Requirements Engineer-
ing.” ACM Transactions on Software
Engineering and Methodology 6
(1996): 1-30.

17. Ravichandar, R., J.D. Arthur, S.A.
Bohner, and D.P. Tegarden. “Introduc-
ing Change-Tolerance Through Capa-
bilities-Based Design: An Empirical
Analysis.” Journal of Software Mainte-
nance and Evolution (20.2) 2008: 135-
170.

About the Authors

James D. Arthur, Ph.D.,
is an associate professor
of computer science at
Virginia Tech. His re-
search interests include
software engineering and

requirements engineering as well as
methods and methodologies supporting
software quality assessment. Arthur has
served as an advisor to the U.S. Navy
Commonality Working Group, as chair
of the Education Panel for National
Software Council Workshop, and was
guest editor for the Annals of Software
Engineering. He has master’s and doctor-
ate degrees in computer science from
Purdue University, and a master’s degree
in mathematics from the University of
North Carolina at Greensboro.

Virginia Tech
Department of Computer Science
2050 Torgersen Hall
Blacksburg, VA 24060
Phone: (540) 231-7538
E-mail: arthur@vt.edu

Ramya Ravichandar is
currently a doctoral can-
didate at Virginia Tech.
Her research interests
include large-scale sys-
tem analysis, require-

ments engineering, change-tolerant sys-
tems, software measurement, and im-
pact analysis. Ravichandar is a member
of the Institute of Electrical and
Electronics Engineers Computer Society.

Virginia Tech
Department of Computer Science
2050 Torgersen Hall
Blacksburg, VA 24060
Phone: (540) 231-7542
E-mail: ramyar@vt.edu

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

FEB2008 c SMALL PROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

APR2008 c PROJECT TRACKING

MAY2008 c LEAN PRINCIPLES

SEPT2008 c APPLICATION SECURITY

to request back issues on topics not
listed above, Please contact <stsc.
customerservice@hill.af.mil> .

October 2008 www.stsc.hill.af.mil 25

The DoD is perhaps the largest and
most complex organization in the

world, employing nearly 1.4 million people
and holding approximately $1.4 trillion in
assets. IT spending for business support
activities in the DoD BMA—funds to
operate, maintain, and modernize business
systems—comprise $15.7 billion of annu-
al DoD IT spending, roughly equal to the
rest of the federal government.

While the DoD has long been
acknowledged for its premier warfighting
capabilities, fragmentation of financial
and business management practices leaves
the DoD vulnerable to waste, fraud, and
abuse, as well as risk of failure on
attempts to build larger, more complex
systems. To support the DoD mission
and the changing nature of the threats to

which the federal government must
respond, the DoD BMA is engaged in a
massive business transformation. It must
modernize and become agile in order to
support 21st century national security
requirements. The BMA CTO evaluated
DoD BMA enterprise processes and asso-
ciated systems—including human re-
source and personnel management, sup-
ply chain, and logistics, as well as financial
and accounting management functions—
to determine the best strategy for achiev-
ing agility. After analysis and assessment
of BMA objectives and study of the over-
all direction for IT within the DoD, the
strategy selected to move the BMA for-
ward is the adoption of an SOA.

The U.S. Government Accountability
Office describes an SOA as an “approach

for sharing functions and applications
across an organization by designing them
as discrete, reusable, business-oriented ser-
vices” [1]. Most importantly, an SOA is a
mechanism by which business capabilities
can be aligned with the technical infra-
structure in support of an agile business
strategy. The DoD’s SOA vision calls for
such alignment through an architecture of
discrete components called services deliver-
ing business capabilities deployed in a sup-
portive infrastructure designed for this pur-
pose. The Office of the BMA CTO and
CA collaborated with the chief informa-
tion officers (CIOs) representing the mili-
tary services, defense agencies, combatant
commands, mission areas, and DoD
Enterprise Services to develop an SOA
strategy, including a supporting environ-

DoD Business Mission Area Service-Oriented Architecture
to Support Business Transformation

The Department of Defense (DoD) Business Mission Area (BMA) accounts for roughly half of the DoD
Information Technology (IT) budget. Many of the DoD’s business systems have been in use for years and are straining
to support the agility of business operations necessary today. As well, many new systems are being developed on such a
scale that it takes nearly a decade to produce the first results. A potential answer to this situation is delivering business
capabilities through a service-oriented architecture (SOA)1. Much of the private sector is rapidly moving in this direc-
tion. The question is, will it work for the DoD? This article is about the results of market research conducted by the
BMA Chief Technical Officer (CTO) and Chief Architect (CA) over a period of about six months to learn about
state-of-the-art SOA and what the DoD can count on from SOA vendors to deliver both business services and SOA
infrastructure in the near- to mid-term.

Dennis E. Wisnosky, Dimitry Feldshteyn, Wil Mancuso, Al (Edward) Gough, Eric J. Riutort, and Paul Strassman
Department of Defense

DoD Enterprise Services
Enterprise Information Environment Mission Area

Computing Infrastructure Domain

Business Activity
Monitoring

4 Service
Orchestration:

Business Process &
Workflow Automation

6 Other BMA Common Servicesn Services

Infrastructure

Other BMA CCommo

InfBusiness frastructurInfusiness

Development

Data Services: Data Virtualization Layery

Interoperability Controller
Distributed Integration Brokers Connected by Robust Messaging (Message-Oriented Middleware)

Computing Infrastructure Domain

Enterprise Service Management5

1
7

Business
Transformation
Engine

DoD & BMA
Federated

Services Registry,
Data Catalog, &

Metadata RegistryW

High Volume
Batch & XML-

based
Transformation

Services

Mediation

DoD Enterprise Services

Machine-to-Machine Messaging

DistrDistr

ation

Broker

ed Integration

M

ributeribu

Broker

p
okers Connec

achine to

n Bro

ac

Broker

y
by Robust M

o Machine

p
cted

o M

Broker

aging (Messa

Messagin

Messa

M

Broker

Oriented Middage-O

ng

Broker

are)dlewa

BrokerBroker

Service
Discovery

2
3

Figure 1: The Business Transformation Infrastructure

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering October 2008

ment termed the Business Operating
Environment (BOE). The BOE leverages
industry best practices to federate techni-
cal architectures, develop capability
requirements, and support the delivery of
portfolios of business capabilities based
on collections of atomic and/or compos-
ite service orchestrations. The BOE is
defined in [2], which details the infrastruc-
ture component of the BOE and the busi-
ness transformation infrastructure (BTI),
shown in Figure 1 (on the previous page).
Some functions of the BTI will be met
through and built upon the DoD Global
Information Grid Enterprise Services.
The technical core of the BTI, designated
the Business Transformation Engine
(BTE), is to be built from commercially
available products.

To assess the feasibility of this strate-
gy, the BMA CTO conducted market
research into maturity and readiness to
support this strategy in SOA technologies
from more than 30 organizations. These
had survived a preliminary screening to
ensure that they were realistic and rele-
vant. The technical research included all
components of the BTE, and was con-
ducted in accordance with departmental
regulations guiding pre-acquisition market
research. The organizations provided live
demonstrations of their development,
test, operational, and production environ-
ments. CIO offices from each military ser-
vice and many defense agencies were
invited to attend and participate in the
presentations. This article provides
research conclusions across the BTE com-
ponents (numbered in Figure 1), as well as
SOA information assurance and gover-
nance.

Industry Readiness to Support
Key BTI Capabilities
The research approach gathered data to
correspond to key technical capabilities
required to build the BTI and included an
assessment of the industry’s maturity in
providing tools to support these technical
capabilities. The research did not consider
SOA technologies not relevant to the BTI.
In this section, we present the assessment.

Interoperability Controller
The interoperability controller component
of the BTI is a pattern or foundation
architecture for brokering, routing, and
processing messages and service invoca-
tions within an SOA. It consists of an
extensible set of integration brokers inter-
connected on the network by robust mes-
saging middleware. The research looked at
products supporting this pattern, examin-

ing them for a number of characteristics,
including support for indirection and
interception, loose coupling, scalability,
and robustness. In general, the products
that most closely support this pattern are
enterprise service bus (ESB) products, as
well as enterprise application integration
and message-oriented middleware through
composition.

The market research shows that the
state of industry products as reasonably
mature and can support the implementa-
tion of the BMA vision for the BTI’s
interoperability controller component.
The message-oriented middleware and
enterprise application integration product
vendors have been working in this direc-
tion through many generations of prod-

ucts. The ESB vendors have built on this
experience to provide an enterprise-wide
solution, though often with proprietary
features. The challenge with the latter is to
build a standards-based SOA that lever-
ages the success of Web technologies
rather than an ESB-based solution that
provides some aspects of SOA but could
lead to over-dependence on a particular
vendor’s technology.

Mediation – Standard and High
Volume
While increasingly more BMA systems
and data sources will communicate
natively in terms of standard message
sets and vocabularies, there is a short-
term need for mediation of information
exchanges, translating, and transforming
messages between information providers

and consumers. The research found good
support of this pattern in both the stan-
dard and high-volume variations. Many
vendors, (such as Fiorano, BEA Systems,
IBM, Iona, Tibco, and webMethods) are
producing capable transformation
engines, especially those focused on
eXtensible Markup Language (XML)
messaging and the use of Extensible
Stylesheet Language Transformation
engines. For high volume, Ab Initio, with
its advanced parallel processing capabili-
ties, allows for the development of high-
performance, straight-through mediation
services. However, the vision for dynam-
ic generation of transformations on a
semantic mediation basis was found to
still be a future capability. The semantic
technology needed is immature, so
semantic tools from companies like
Revelytix and IBM are best suited for
supporting development time activities,
with semantics being early-bound into
runtime environments.

Service Discovery and Metadata
Registries
The BMA’s approach to SOA calls for
metadata registries and repositories sup-
porting the discovery of services and
information assets. DoD registries are
built around Organization for the
Advancement of Structured Information
standards, such as Universal Description
and Discovery Interface (UDDI) and elec-
tronic business XML (ebXML) Registry
Information Model and Registry Services
(including a UDDI service registry), a
Metadata Registry that contains the DoD’s
structural and semantic metadata, and an
enterprise catalog containing DoD specifi-
cation metadata to support discovery of
information assets. Given the DoD’s size
and the likely need to federate registries,
the BMA included this category in the
market research.

Many of the vendors in the market
research provide UDDI service registries,
notably Systinet, now a part of HP. Many
vendors include UDDI capability (e.g.,
IBM, BEA, Software AG), with a number
of vendors using Systinet. Many vendors
also include metadata management capa-
bilities and repository components (e.g.,
Fiorano, Lombardi), while others such as
Revelytix specialize around semantic
metadata. The DoD’s metadata discovery
specification is not directly supported by
vendors, though those that support the
ebXML architecture can act as enterprise
catalog instances.

Business Activity Monitoring
Business activity monitoring (BAM)

“The challenge ... is to
build a standards-based
SOA that leverages the

success of Web
technologies rather than
an ESB-based solution

that provides some
aspects of SOA but

could lead to
over-dependence on a

particular vendor’s
technology.”

DoD Business Mission Area Service-Oriented Architecture to Support Business Transformation

October 2008 www.stsc.hill.af.mil 27

allows management of an SOA in busi-
ness terms. Market research found that
BAM is still in early development. There
are many vendors providing BAM func-
tionality coming from diverse industry
segments. Application integration and
enterprise software vendors (BEA,
Fiorano, IBM, IONA Technologies,
Microsoft, Oracle, SAP, TIBCO, web-
Methods, etc.) are extending existing
assets and acquiring additional capabili-
ties in order to support BAM. Business
intelligence vendors (Business Objects,
Cognos, Software AG, etc.) are working
to adapt technology and incorporate
business rules engines into their solu-
tions to support real-time BAM opera-
tions. There is also a set of pure-play
BAM providers who focus on complete
BAM solutions. Overall, the research
found little standardization across ven-
dor implementations, making true inter-
operability difficult to achieve on an
enterprise level. The most common uses
found in the research revolve more
around project-based, application-spe-
cific uses rather than as general enter-
prise infrastructure.

Enterprise Services Management
Enterprise services management (ESM)
provides for managing the service life
cycle and is the foundation for SOA run-
time governance. Market research found
a limited number of SOA ESM vendors.
The main vendors (e.g., IBM, Hewlett-
Packard) possess strong portfolios in
traditional network management and
integrated service management markets
that they have extended to ESM. Most
of the tools researched include feature
sets spanning the range from low-level
IT service management to the higher-
level business management needs, and
the differences are more in terms of
focus. Often, a more comprehensive
solution can be composed by combining
products (e.g., AmberPoint and HP
OpenView SOA Manager).

Business Process and Workflow
Automation (Business Process
Modeling, Execution, and Monitoring)
The BTI must provide for the modeling
and execution of business processes
through the orchestration of services,
and the monitoring of those business
processes. While the research found that
there are still many proprietary modeling
offerings, there is considerable conver-
gence around Business Process
Modeling Notation (BPMN). The
research also found strong support
across vendors for the Business Process

Execution Language standard, though
there is also emerging support for direct
execution of BPMN through the use of
the XML Process Definition Language,
an XML serialization of BPMN. Many
vendors also provide the needed moni-
toring of those processes at runtime,
often building on extensive experience
with network and application monitor-
ing capabilities. Still further in the future
are tools with semantic continuity from
modeling to execution in the business
process arena; however, the research did
find that what already exists is maturing
rapidly, and can provide a base for
implementing the BTI. Perhaps surpris-
ingly, not a single vendor included the
Unified Modeling Language in either its
list of product offerings relative to an
SOA, or as a tool that it uses in its SOA
engagements.

Data Virtualization and Data
Services
Among virtualization trends, virtualizing
data sources has emerged as a real-world
capability, and is a key component of the
BMA SOA vision in which a virtual data
store makes information from many
sources available in real time without a
physical store. The vendors include
Composite Software, Red Hat Meta-
matrix, IBM, and Streambase.

The BMA research found that over-
all data virtualization and associated data
services have matured to the point that
there are many cases where they can
produce high-performance and robust
data sources and services to be used in a
net-centric environment, significantly
reducing the latency in data availability
to business analysts and decision makers
who do not need to wait for the period-
ic load of a data warehouse or data mart.

Information Assurance for
SOA
An SOA introduces new information
assurance (IA) challenges. The interop-
erability and extended, net-centric data
sharing capabilities enabled by SOAs are
themselves potential points of vulnera-
bility. A compromised service registry
provides an attacker with a detailed map
of the operations and capabilities of an
organization. Standards and standard
protocols narrow the range of network
capabilities that an attacker must sub-
vert, and success wins wide access.
Deploying an SOA in a responsible fash-
ion must consider the effects of infor-
mation warfare in addition to other plan-
ning. Only through such IA diligence
will the DoD be able to truly realize the
savings and benefits that an SOA
promises for a large, geographically dis-
persed organization that must operate in
the face of the exigencies of war.
Additionally, SOAs must also meet old
IA challenges including reliability, avail-
ability, and non-repudiation. An SOA
does not relieve implementers of the
responsibility for solid engineering in
areas of platforms, networking, back-
ups, and auditing. Past best practices and
standards must be brought to bear on
SOA implementations as well as tradi-
tional ones.

As would be expected, the DoD is
making IA services a part of the Net-
Centric Core Enterprise Services so that
security is ubiquitous, well-tested, and a
part of the infrastructure. An SOA pro-
vides the possibility to externalize secu-
rity as a common, cross-cutting set of
capabilities, themselves presented as ser-
vices. In this way, each application or
program does not have to master the
complex technical capabilities required,
but can declaratively define IA require-
ments and expect them to be honored
and enforced by the infrastructure. At
the same time, DoD-level IA policy can
be enforced on SOA operations, includ-
ing authorization control, redaction, and
auditing. An SOA must also work with
the DoD’s Public Key Infrastructure to
enable secure single sign-on, and to
ensure preservation of appropriate non-
repudiation characteristics as people and
systems take action against DoD and
BMA data assets.

The BTI is intended to embrace and
extend the DoD SOA and IA foundations.
During the research, the BMA team stud-
ied vendor capabilities with regard to IA
and security in a number of areas. In par-
ticular, there was support for emerging

“... the DoD is
making IA services

a part of the
Net-Centric Core

Enterprise Services so
that security is

ubiquitous, well-tested,
and a part of

the infrastructure.”

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering October 2008

Web Services security standards and the
inclusion of IA capabilities, both for
enabling IA and for working with an
enterprise’s existing IA infrastructure.
• Support for Web Services IA

Standards. Vendor support for the
Web Services standards stack (WS-*)
and related sets of XML and network
IA standards—such as the WS-
Security Assertion Markup Language,
and the eXtensible Access Control
Markup Language—is maturing rapid-
ly along with the standards them-
selves. These standards are key to
moving IA into the infrastructure, the
SOA foundation, and enabling a
declarative IA. Most of the deep
stacks of SOA capability, such as
those from IBM, BEA, Oracle, and
Microsoft, have incorporated these
standards throughout.

• Enabling IA Infrastructure Capa-
bilities. Some organizations includ-
ed in the research (such as
AmberPoint) focus explicitly on pro-
viding SOA security capabilities. The
market research found that there is a
trend to make IA an integral part of
SOA through provisioning, gover-
nance, and key infrastructure, such as
with the BTI’s interoperability con-
troller. This holds out the promise
that as an SOA is implemented in the
BMA, it will not prove to be the soft
and chewy inside of a hard and crunchy
perimeter defense.

• Integration With Existing IA
Infrastructure. DoD IA must be a
consideration from the beginning of
the life cycle. An SOA must be able
to work and interoperate with IA
standards, practices, and approaches
developed during the DoD and U.S.
intelligence community’s long experi-
ence in producing networked IT sys-
tems to provide defense in depth.
The market research found that there
is a convergence in this arena, with
the DoD looking to adopt industry
and commercial best practices in IA
for its solutions, and SOA vendors
(included in the research) willing to
meet and accommodate the stringent
IA requirements of the DoD.

Governance
Governance—the means to assure that
laws, regulations, and policies are met in
IT operations and investments—is of
key importance for the move to an SOA.
An SOA introduces new challenges for
IT and business governance due to solu-
tions composed from numerous distrib-
uted services in an environment of het-

erogeneous ownership and control, and
by enabling widespread sharing of infor-
mation and capabilities. The BMA strat-
egy for SOA governance addresses both
buildtime and runtime needs.

Buildtime (Investment) Governance
The research assessed buildtime gover-
nance in the following areas:
• Enterprise Architecture Satisfac-

tion. The research found that enter-
prise architecture tools are moving to
explicitly model services, such as
those from Mega Software or IBM
(Telelogic). However, these tools
have (at most) limited interoperabili-
ty with tools used to design and
develop services. These tools also

provide little in the way of automat-
ed compliance checking or manage-
ment of the transition between
enterprise architecture models and
service designs and implementations.

• Duplication Avoidance. The re-
search found that this aspect of gover-
nance is provided largely by the ability
of SOA development tools and envi-
ronments to access service registries
and repositories. This allows develop-
ers to determine whether an imple-
mentation for their service already
exists. Additional metadata repository
capabilities (providing further infor-
mation) support this process.

• Service Usage. The market research
found that the main mechanisms for
assuring that existing services are
used as appropriate are through
development tools that integrate
with an enterprise’s service registries
and repositories. These tools provide
developers with service descriptions
and specifications at design and build
time. Many tool vendors, such as
Lombardi and IBM, provide this
capability.

• Service Verification. The market
research found that there is good
support for test and verify SOA ser-
vices—against functional require-
ments and service level agreements
(SLAs)—when combined with more
traditional automated testing tools.

• SLA Development. The market
research found support for capturing
SLAs, but support for the actual ini-
tial development of the SLAs is
more limited. System architects and
designers need to pay close attention
to how they develop SLAs and trans-
late them into digital form for use by
automated SLA management capa-
bilities.

Runtime (Operations) Governance
Runtime governance should provide vis-
ibility into service operation allowing
management of services, the ability to
take corrective action (as needed) to
ensure effectively uninterrupted business
operations, and the capture of operation
audit information. Provisioning, deploy-
ing new services, and taking old services
out of operation without significant
impact on business activities or overall
operations, are key parts of overall run-
time governance. Characteristics looked
for in runtime governance include the
following:
• Operational Visibility. Make the

runtime state visible in both techni-
cal (network and machine usage) and
business terms.

• Service Management. Monitor
and manage the execution and oper-
ation of services in an SOA.

• Policy Enforcement. Enforce secu-
rity and other policy-based con-
straints in a declarative fashion,
external to SOA services, allowing
systems to adapt quickly to changing
policy circumstances without coding.

• Auditing. Track and record key
events and actions within the SOA
environment for later analysis.

• Provisioning and Configuration
Management. Provision services
for deployment in the SOA and track
its configuration across changes as
they occur.

Governance Conclusions
The market research found no complete
solution available as a single package,
but there is considerable governance
capability available in the marketplace.
For example, in the area of provisioning
and configuration management, the
research found that SOA management
tools provide some of this capability,

“While serious caution
remains in the areas of
IA and security ... the
need for significant
cultural change for

successful SOA
implementation cannot
be overemphasized ...”

DoD Business Mission Area Service-Oriented Architecture to Support Business Transformation

October 2008 www.stsc.hill.af.mil 29

but may need to be joined with more tra-
ditional configuration management and
deployment tools for reasonable capabil-
ity. Governance capability (as required
by the BMA strategy for SOA) can be
provided through commercial tools, but
designers must carefully assess and
acquire the components from various
vendors in accordance with a strong
design and plan that they must create for
themselves.

Conclusion
The DoD BMA has embarked on an SOA
strategy. The “BMA Architecture Feder-
ation Strategy and Roadmap” provides
guidance for the DoD BMA to quickly
gain business value by delivering capabili-
ty to support the warfighter through an
SOA, while using a phased approach for
transforming legacy systems. The mar-
ket research performed by the BMA
Office of the CTO and CA has found
that industry capabilities to implement
or enable the components defined in the
BMA Service-Oriented Infrastructure
have matured in the marketplace. While
serious caution remains in the areas of
IA and security, and the need for signif-
icant cultural change for successful SOA
implementation cannot be overempha-
sized, it is clear that it is feasible for an
enterprise the size of the DoD to move
forward on implementing an SOA and
to realize the business benefits of agility,
interoperability, and net-centric data
sharing that an SOA provides.

The opinions expressed in this article
are those of the authors only and in no
way constitutes the policy or express
direction of the DoD. For additional
information about the vendors, see the
online version of this article.u

Note
1. According to the U.S. Government

Accountability Office, “A service-
oriented architecture is an approach
for sharing functions and applica-
tions across an organization by
designing them as discrete, reusable,
business-oriented services. These
services need to be, among other
things, (1) self-contained …; (2) pub-
lished and exposed as self-describing
…; and (3) subscribed to via well-
defined and standardized interfaces.”

References
1. United States. Government Accoun-

tability Office. Defense Business
Transformation: A Comprehensive
Plan, Integrated Efforts, and Sustained
Leadership Are Needed to Assure

Success. 16 Nov. 2006 <www.gao.
gov/new.items/d07229t.pdf>.

2. United States. DoD. Business Mission
Area Architecture Federation Strategy
and Roadmap. Ver. 2.4a. 29 Jan. 2008
<www.defenselink.mil/dbt/federation
_strategy.html>.

Additional Reading
1. United States. DoD CIO. Global

Information Grid Architectural Vision
for a Net-Centric, Service-Oriented
DoD Enterprise. 21 Mar. 2008. Ver.
1.0. June 2007 <www.defenselink.
mil/cio-nii/docs/GIGArchVision.
pdf>.

2. Erl, Thomas. Service-Oriented Archi-
tecture: Concepts, Technology, and
Design. New Jersey: Prentice Hall
PTR, 2005.

About the Authors

Dennis E. Wisnosky’s
responsibilities include
guiding development of
Federated Architectures
and SOA within the
DoD’s BMA. He is rec-

ognized as the father of the Integrated
Definition Language and the author of
several books. Wisnosky holds a bache-
lor’s degree from California University
of Pennsylvania and master’s degrees
from both the University of Dayton and
the University of Pittsburgh. He has
received numerous honors for his work,
including the Federal 100 Award in 2007.

DoD
Office of Business Transformation
3600 Defense Pentagon
Room 3C889A
Washington, D.C. 20301-2600
Phone: (703) 607-3440
Fax: (703) 607-2451
E-mail: dennis.wisnosky@osd.mil

Dimitry Feldshteyn is a chief of SOA
strategy supporting the DoD BMA
CTO and CA. He is president for
eMillennium Inc., and has 18 years expe-
rience working in the IT industry, 12
years of which he has spent in leadership
and executive positions at Hewlett-
Packard and IBM.

Wil Mancuso is one of the lead SOA
architects supporting the DoD BMA
CTO and CA. He is the president of
Information Management Solutions
Consultants, Inc., and has more than 20
years of experience in industry. Mancuso
developed the DoD Log EA, the
Defense Logistics Agency’s Integrated
Data Environment, and the BMA’s
Common Vocabulary.

Al (Edward) Gough is a senior enter-
prise architect supporting the DoD
BMA CTO and CA. Gough is chief
technology officer for CAC Inter-
national Inc.’s transformation solutions
group. He works on furthering the adop-
tion and implementation of SOA across
the BMA and DoD.

Eric J. Riutort is a business and IT man-
agement consultant supporting the DoD
BMA CTO and CA. He works for Tech
Team Government Solutions, Inc., and
has 15 years of industry experience in
software development, semiconductor,
and automotive manufacturing. Riutort
wrote the BMA’s SOA governance and
change management strategies.

Paul A. Strassmann was DoD CIO
from 1988 to 1992. In addition, he has
been the chief information executive of
General Foods, Kraft, Xerox, and
NASA. He is presently distinguished
professor of information sciences at
George Mason University. He received
the Distinguished Public Service Medal
from the DoD as well as the Exceptional
Service Medal from NASA for his work
on information security and systems
architecture.

Departments

30 CROSSTALK The Journal of Defense Software Engineering October 2008

Fault Handling and Fault Tolerance
www.eventhelix.com/RealtimeMantra/FaultHandling
EventHelix.com Inc. has several articles covering software and
hardware fault handling and fault tolerance techniques. Along
with articles on the basics of hardware and software as well as a
description of the fault handling life cycle, you’ll find tech-
niques for making systems more tolerant to software bugs,
reboot and recovery, hardware redundancy, measuring and
improving computer system reliability, and calculating system
availability.

Fraunhofer Center – Maryland (FC-MD)
http://fc-md.umd.edu/fcmd
The FC-MD is a non-profit applied research and technology
transfer organization with the mission to advance the state-of-
the-practice in software development and acquisition organiza-
tions by applying state-of-the-art research results. Along with
details from their projects, publications, and training courses,
you can learn about Experience Factory, their unique model for
better understanding and managing your software business.

DO-178 Industry Group Homepage
www.do178site.com
DO-178B is considered the world’s strictest software standard
and influences other domains including medical devices, trans-
portation, and telecommunications. The DO-178B Industry

Group is the world’s largest collection of avionics companies
and DO-178B avionics product and services providers who
share a common mission of achieving DO-178B success.

The Common Criteria (CC) Portal
www.commoncriteriaportal.org
Learn more about the CC at this internationally recognized
Web portal, the driving force for the widest available mutual
recognition of secure IT products. This site provides informa-
tion on the status of the CC Recognition Agreement, CC and
certification schemes, licensed laboratories, certified products,
as well as related information, news, and events.

Vision for a Net-Centric, Service-Oriented
DoD Enterprise
www.defenselink.mil/cio-nii/docs/GIGArchVision.pdf
The Department of Defense (DoD) is transforming to become
a service-oriented, net-centric force. Last year, the DoD’s Global
Information Grid (GIG) put out a detailed architectural vision
with the goal of promoting a unity of effort in reaching their
target state for the development of GIG capabilities that will
support future DoD missions, operations, and functions. They
also provide a short, high-level, understandable description of
the DoD’s objective enterprise architecture.

WEB SITES

“Technology: Advancing Precision”

Save the Date Now, Plan to Attend!

www.sstc-online.org

20-23 April 2009 - Salt Lake City, Utah

TOPICS FOR SSTC 2009

• Assurance and Security
• Robust, Reliable, and Resilient Engineering
• Policies and Standards
• Processes and Methods
• New Concepts and Trends
• Modernizing Systems and Software
• Developmental Life Cycle
• Estimating and Measuring
• Professional Development / Education
• Lessons Learned
• Competitive Modeling

• Systems Engineers
• Process Engineers
• Quality and Test Engineers

WHO SHOULD ATTEND:

• Acquisition Professionals
• Program/Project Managers
• Programmers
• Systems Developers

BACKTALK

October 2008 www.stsc.hill.af.mil 31

Way back in the 1980s, I was introduced to Moore’s Law1 in
an engineering class. It says that computing power doubles

approximately every 18 months to two years. This same law
appears to apply to many computer-related items such as pro-
cessing speed, memory capacity, and even digital camera resolu-
tion. There’s a lot of similar laws for disk size, power consump-
tion, network capacity, etc. Moore’s Law has held true since its
origination in 1965, and will probably hold true for at least the
next decade. Every few years engineers will say that we’ve
reached the limit of Moore’s Law, but new technology keeps
proving it true. The bottom line is that technology grows at an
exponential rate.

My first computer, a Commodore SuperPet that I bought back
in 1982, had a whopping 128 kilobytes (KB) of memory. I don’t
recall the clock speed, but it was a relatively slow 6502 processor
that I believe was at about 1 megahertz. (As an historical point, the
Commodore SuperPet also had a 6809 processor, and you could
run dual operating systems and interpreters for Pascal, APL, FOR-
TRAN, COBOL, plus the obligatory BASIC interpreters).

Twenty-six years later, my current laptop has three gigabytes
(GBs) of memory. This pretty much follows Moore’s Law, as
does the processing speed of my current machine, a two giga-
hertz (dual processor)2.

It appears that Moore’s Law also applies to the size of the
operating system. Remember MS-DOS 2.11? Back in 1983, it
loaded in 64KB—and left you room to run your programs!
Windows 95 (12 years later) took 50 megabytes (MB) of disk
space. And now with Windows Vista, Microsoft says you need
15GB of free disk space and 512MB of memory (still following
Moore’s Law).

What’s the point, you ask? I’m not Microsoft bashing. I like my
operating system. I find it useful to run multiple applications,
tons of sidebar gadgets, high-resolution graphics, and have music
playing in the background.

However, with the increased program size, did you know that
the chance for failure goes up, too? I know that Vista is a pretty
solid operating system. I haven’t had a single blue screen of
death, and only about three needed hard shutdown and reboot
occasions since I bought it last year (as opposed to about three-
a-day from my first experiences with Windows 95, if I recall). I’m
talking about the chance of failure that comes from large-scale
reliance on the compliance of others. And reliance on the rapid-
ly expanding technology raises the potential for problems.

In our office, we have a one terabyte (TB) four-disk RAID
(redundant array of inexpensive disks, as named by the inventor, or
occasionally known as redundant array of independent disks)3 cluster.
It has the very reasonable name of “Terrabyte4.” If any two of the
four-disk cluster fails, we still have a complete set of data. Until an
“unexpected” failure took it totally down. Our domain name sys-
tem server died—and with it down, Terrabyte was unable to grab
an address. It took us a bit of time to locate the problem, and fig-
ure out how to reconfigure it. Of course, eventually, we realized
that we could just plug directly into a computer. Then we realized
that the permissions on the file access were based on domain
authentication; so even though I could plug the device directly into
my computer, it couldn’t authenticate the access. Sure, it was fix-
able, but the delay cost several of us a bit of work. And, I admit,
there was a bit of momentary panic when somebody asked, “Just
in case, we do have a backup of it, don’t we?”

We all have become dependent upon the increasing complex-

ity of new technology. And when the technology fails, we all feel
powerless. It’s not like any of us can keep four or five different
backups around on floppy anymore—backing up a TB RAID
cluster takes some serious storage!

The point is that increased power, increased memory, and
increased disk storage bring increased PPoF (Potential Points of
Failure)5. And you need to plan for these failures.

Are you developing large-scale applications? Have you con-
sidered what to do in case the network fails? The database fails?
How many backups do you have? Where are the backups located
—having them in the same location really won’t help in case of
fire or flood, will it? Whatever technology you implement, even-
tually one of your users will run into a case where something
goes bad, and they are going to expect you to have thought of
the potential problem, and developed a contingency plan for it!

Technology lures you in—like when you’re stuck in the airport,
flight cancelled, you need to re-book, and you realize your cell
phone is out of juice. Backup? Tried to find a pay phone lately?
Kind of makes you long for the days when a spare deck of cards
in your desk took care of your backup needs.

Speaking of faults, this column was almost late because the e-
mail from the CrossTalk editors reminding me my article was
due was somehow misdirected into my junk mail folder. I hesi-
tate to state how great my life would be if the other 99 percent
of my daily e-mail was similarly (but faultily) misdirected. If only
Outlook had an “I.Q. filter,” similar to caller ID. Then, when
folks complained that I never responded to their e-mail, I could
say “Honest, it’s not my fault!”

—David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

dcook@aegistg.com

Notes
1. Wikipedia. <http://en.wikipedia.org/wiki/Moore%27s_ law>.

And before anybody corrects me, yes, I know that Moore’s
Law originally referred to the number of transistors on a chip.

2. See <http://nano-taiwan.sinica.edu.tw/2008_WinterSchool
/index/Moore%27slaw%20graph2.gif> for an image of the
growth in Intel Processors.

3. Wikipedia again.
4. Why the extra “r”? Because my granddaughter is named

Terra, I love her, and my office was foolish enough to let me
name our RAID cluster.

5. Yes, I made this one up!

Whose FAULT Is It, Anyway?

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Development of Fault-Tolerant Systems
	Measures and Risk Indicators forEarly Insight Into Software Safety
	Safety and Security: Certification Issues and Technologies
	WebBee: A Platform for Secure Mobile Coordination and Communication in Crisis Scenarios

	Software Engineering Technology
	Constructing Change-Tolerant SystemsUsing Capability-Based Design
	DoD Business Mission Area Service-Oriented Architectureto Support Business Transformation

	Coming Events
	Letter to the Editor
	Web Sites
	SSTC 2009 Conference Ad
	BackTalk
	Back Cover

